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The effects of the neuromodulator serotonin on affect and

behavior are so diverse and wide-ranging that characterizing its

function has faced substantial challenges. Here we review

recent work investigating how serotonin shapes affective and

social decision-making in humans, focusing in particular on

serotonin’s influence on aversive processing. We consider the

evidence that serotonin plays a key role in linking so-called

Pavlovian aversive predictions with behavioral inhibition, a

proposal derived from computational models of value-based

decision-making. We evaluate the extent to which a core

mechanism connecting serotonin with Pavlovian inhibition can

explain diverse effects of serotonin on affective and social

decision-making and highlight critical questions for future

research.
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Introduction
Neuromodulators such as serotonin and dopamine serve a

crucial function in shaping decision-making to adaptively

fit the current environmental context. These systems have

diffuse ramifications throughout cortical and subcortical

regions that enable them to exert a global influence on

brain function, but complicate the discovery of precise

behavioral functions. In the case of dopamine, notable

progress has been made in the last few decades, with

insights coming from ground-breaking electrophysiologi-

cal studies in nonhuman primates [1] and major advances in

theoretical modeling implicating phasic dopamine signal-

ing in reward-guided learning [2]. Like dopamine, seroto-

nin has long been implicated in reinforcement learning and

decision making. However, unlike dopamine, there is no
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similarly well-developed theoretical framework for guiding

and interpreting empirical research. Perhaps the most

popular contemporary ideas about serotonin come from

Dayan, Daw, Huys, et al. [3��,4�,5,6], who have revived

earlier ideas from, among others, Deakin et al. [7], to

suggest that serotonin serves as a motivational opponent

to dopamine with, on the one hand, dopamine neurons

coding an appetitive prediction error, important for learn-

ing about reward, and on the other hand, serotonin neurons

coding an aversive prediction error, important for learning

about punishment [8�] (but see for an alternative proposal

[9]).

This general idea concurs with observations that seroto-

nin is implicated in disorders that are characterized by

abnormal aversive processing, such as impulsive aggres-

sion [10], anxiety, and depression [11]. However, these

clinical implications also highlight the paradoxical nature

of the relationship between serotonin and aversive pro-

cessing. On the one hand, low serotonin is associated with

impulsive, disinhibited behavior, which is characterized

by a failure to take into account the negative conse-

quences of behaviors. On the other hand, low serotonin

is also implicated in depression and anxiety, which are

accompanied by negative biases in behavior and cognition

that can be conceptualized as reflecting an enhanced

impact of punishment [12]. How can the same neuro-

transmitter protect against both impulsive disinhibition

and depression, which seem to be associated with a

reduced versus enhanced impact of punishment, respec-

tively? Here we review recent work on serotonin’s role in

aversive processing in affective and social decision-mak-

ing, while recognizing explicitly that accumulating evi-

dence implicates serotonin in the domains of appetitive

processing [13] as well as waiting for reward [14].

Our aim is to identify and evaluate core mechanisms that

may connect serotonin’s common contribution to both

affective and social decision-making. In particular, we

consider the possibility that serotonin plays a key role in

linking aversive predictions with behavioral inhibition — a

so-called ‘Pavlovian’ mechanism that has been argued to

underlie a range of anomalies in decision-making [15]. The

basic idea is that evolution has endowed even simple

organisms with powerful, pre-specified behavioral programs

whereby predictions of rewards and punishments elicit

innate, preparatory approach and avoidance responses, re-

spectively. Such Pavlovian responses serve a useful func-

tion by preparing the organism to interact optimally with its

environment, but can also lead to self-defeating behaviors
www.sciencedirect.com
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[16�]. Here we consider the extent to which a serotonergic

modulation of Pavlovian aversive behaviors can unify its

influence on social and affective decision-making and help

to resolve its paradoxical involvement in both impulsive

disinhibition and depression.

Serotonin and affective decision-making
To begin assessing the effects of serotonin on human

learning and decision-making, Cools et al. have employed

a probabilistic reversal learning paradigm [17]. In this

task, participants have to learn by trial and error to choose

the usually rewarded stimulus, and to avoid the usually

punished stimulus. This paradigm enables separate as-

sessment of sensitivity to reward and sensitivity to pun-

ishment, by assessing the degree to which participants

stay with the same option after receiving reward, on win-

stay trials, versus the degree to which they shift to the

other option after receiving punishment, on lose-shift

trials. The proportion of lose-shift trials is a particularly

sensitive measure in this task. For example, Sahakian

et al. have used this task to show that clinical depression is

accompanied by an enhanced proportion of lose-shift

trials [18]. Evidence for a role for serotonin specifically

in lose-shift behavior comes from recent work investigat-

ing the sensitivity of probabilistic reversal learning to a

common genetic polymorphism in the serotonin-trans-

porter-linked promoter region, the 5HTTLPR, in

SLC6A4, the gene that codes for the serotonin transporter

[19�]. Using a large sample (n > 700) den Ouden et al.
[19�] found that participants who are homozygous for that

long allele, putatively associated with higher serotonin

transporter density, exhibited more lose-shift behavior

than did carriers of the short allele. As in the studies with

depression, there were no effects on win-stay behavior.

Furthermore, the effect of the serotonin transporter poly-

morphism doubly dissociated from that of the dopamine

transporter polymorphism, which did not affect lose-

shifting, while it did significantly affect perseveration

following reversal [19�]. Together these studies substan-

tiate a disproportionate role for serotonin in punishment-

related behavior, although we recognize also the exis-

tence of several studies suggesting a potential role of

serotonin in appetitive processing [20–22].

To assess more directly the hypothesis that low serotonin

levels are associated with poor punishment prediction

learning [8�], Cools, Robinson, et al. adopted the acute

tryptophan depletion procedure [23] and a deterministic

reversal learning paradigm where participants had to learn

to predict whether a highlighted pattern would be followed

by reward or punishment. The reward/punishment con-

tingencies reversed regularly, thus ensuring high demands

for learning. Lowering serotonin levels with acute trypto-

phan depletion [23] improved punishment prediction

learning in this task, while leaving unaffected reward

learning, in two independent studies [24,25]. This finding

is generally consistent with serotonin’s implication in
www.sciencedirect.com 
clinical depression. However, it did not follow obviously

from the theoretical proposal that lowering (phasic) sero-

tonin should rather attenuate aversive prediction errors [8�].
According to this work, learning to predict punishment

might depend on a learning-dependent transfer of a high-

amplitude phasic serotonin response from an aversive

outcome to a conditioned stimulus that predicts it. How

can we reconcile this with our observation that lowering

serotonin actually enhanced punishment prediction? One

possibility, albeit speculative, is that tryptophan depletion

reduced only the ‘background’ levels of serotonin, thus

indirectly increasing the dynamic range and impact of

phasic serotonin. In other words, tryptophan depletion

might have shifted the system from a tonic mode of

neurotransmission to a phasic mode of neurotransmission

[26].

A different though not mutually exclusive possibility is

that effects of serotonin might be understood not just in

aversive terms, but also in terms of a Pavlovian inhibition

of behavior in the face of aversive predictions — an idea

consistent with very early studies of serotonin and pun-

ishment [27,28]. The crucial observation here is that

predictions of future aversive outcomes often lead to

behavioral inhibition, and serotonin might not just be

involved in the learning of these aversive predictions and

the inhibitory consequences that ensue, but also in the

causal relationship between aversive Pavlovian proces-

sing and behavioral inhibition. Consistent with this idea,

researchers have shown that predictions of punishment

typically lead to behavioral inhibition, indexed by a

slowing of response times and a bias against responses

that lead to punishment, and tryptophan depletion

abolishes this punishment-induced behavioral inhibition

[29,30]. Furthermore, the effect of tryptophan depletion

on punishment-induced behavioral inhibition appears to

be driven by Pavlovian aversive predictions linking sti-

muli and punishments irrespective of response, rather

than instrumental aversive predictions linking stimuli,

responses, and punishments [30]. According to this ac-

count, decreasing serotonin does not enhance the impact

of punishment on learning, but rather reduces the impact

of Pavlovian punishment predictions on behavioral inhi-

bition. This bias also has implications for economic

choices, such as those where larger delayed rewards lurk

behind smaller immediate losses [31,32��].

A recent study tested the aversive Pavlovian inhibition

hypothesis of serotonin directly using a Pavlovian to

instrumental transfer (PIT) paradigm in conjunction with

acute tryptophan depletion [33��]. Here, participants are

asked to perform instrumental tasks (e.g. pressing a lever

for food) and separately undergo classical conditioning.

The PIT effect consists in these task-irrelevant Pavlovian

stimuli modulating the instrumental responses (in extinc-

tion), with positively and negatively valued stimuli, re-

spectively, increasing and decreasing responding for
Current Opinion in Behavioral Sciences 2015, 5:64–70
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reward [34]. Under placebo, instrumental responding was

inhibited in the presence of aversive Pavlovian condi-

tioned stimuli, evidencing a classic aversive PIT or con-

ditioned suppression effect. Strikingly, this effect was

abolished, if anything reversed, after acute tryptophan

depletion. Thus depletion of central serotonin elicited

aversive Pavlovian disinhibition [33��] (but see [35]).

We began this review by highlighting that reductions in

serotonin transmission have been associated with both

ends of an apparent continuum of neuropsychiatric dis-

orders, ranging from impulsive aggression (e.g. violent

offenders) to anxiety and depression. Recent work has

investigated whether these distinct disturbances, given

their associations with low serotonin, might also both be

accompanied by impaired Pavlovian aversive (inhibitory)

responses to aversive cues.

One line of work has investigated the interaction between

aversion and behavioral inhibition in healthy participants

who were high or low in trait social avoidance, as mea-

sured with the Liebowietz Social Anxiety Scale. Partici-

pants completed a task in which they were presented with

appetitive happy faces and aversive angry faces. For each

face, they had to learn whether to make a Go or NoGo

response. Aversive inhibition was quantified as the degree

to which participants exhibited a greater tendency to

make NoGo responses for the angry versus the happy

faces. Such a NoGo bias was indeed present in the low-

avoidant participants. Intriguingly, this aversive inhibi-

tion effect was completely abolished in highly avoidant

participants [36].

Another line of work has focused on aversive Pavlovian

inhibition in violent offenders with psychopathy. Psycho-

paths are typically not affected by emotional distress cues

that would normally discourage instrumentally aggressive

acts [37]. In keeping with these characteristics, we found

that the instrumental choices of violent offenders with

psychopathic traits were unaffected by angry emotional

faces. Specifically, violent offenders showed reduced

instrumental avoidance in the context of aversive (versus

appetitive) faces relative to non-criminal controls [70].

Thus, psychopathic tendencies were accompanied by

deficient transfer of Pavlovian value to systems that

control instrumental action. This general finding was

replicated in a separate study using a different paradigm,

which revealed that increased psychopathic severity was

associated with reduced aversive PIT [71]. Thus, aversive

Pavlovian inhibition is disrupted both in violent offenders

and as a function of social anxiety traits, raising the

possibility that antisocial aggression and social anxiety

represent distinct expressions of a common underlying

deficit.

In summary, accumulating evidence suggests that central

serotonin depletion attenuates the coupling between
Current Opinion in Behavioral Sciences 2015, 5:64–70 
aversive Pavlovian predictions and behavioral inhibition.

Critically, aversive Pavlovian disinhibition might repre-

sent a core feature of a continuum of serotonin-related

neuropsychiatric disorders, ranging from antisocial, im-

pulsive aggression to social avoidance. As such, aversive

Pavlovian biases might well contribute critically to adap-

tive social behavior. In the next section we examine this

possibility in further detail.

Serotonin and social decision-making
The observations reviewed so far concur with decades of

research linking reduced serotonin function to antisocial

and aggressive behavior [10,38,39�]. More recent work has

used neuroeconomics methods to identify how serotonin

modulates social decision-making in particular. For ex-

ample, lowering serotonin with tryptophan depletion

decreased cooperation in a repeated prisoner’s dilemma

[40] and a repeated common pool dilemma [41]. Howev-

er, the repeated interactions in these settings obscure

somewhat the underlying mechanism. Serotonin could

influence cooperative behavior by modulating beliefs
about others, other-regarding preferences for fair versus

purely self-serving outcomes, or both.

Later work pinpointed a role for serotonin in shaping

other-regarding preferences specifically. In a series of

experiments, Crockett et al. manipulated serotonin func-

tion in participants playing the role of responder in one-

shot ultimatum games, where a proposer offers a portion

of a shared pie to the responder. The responder can either

accept the offer in which case both players are paid

accordingly, or reject the offer, which results in neither

receiving any payment. Responders typically reject offers

of less than about 30% of the pie, a behavior thought to

reflect a desire to punish proposers who violate a social

norm of fairness [42]. Depleting central serotonin made

responders more likely to punish unfair behavior [43,44],

while enhancing serotonin neurotransmission with the

selective serotonin reuptake inhibitor (SSRI) citalopram

reduced punishment [45]. Consistent with these findings,

a PET study demonstrated that low serotonin levels in

the dorsal raphé nuclei were associated with increased

rejection rates in the ultimatum game [46]. This demon-

strates that serotonin influences preferences about others’

outcomes in addition to its role in shaping decisions about

one’s own outcomes, as reviewed above.

Neuroimaging work provides clues about the underlying

mechanism. Previous studies had shown that punishing

unfair behavior is associated with increased activation in

the dorsal striatum [47,48], a region implicated in repre-

senting the value of instrumental goals [49]. Acute tryp-

tophan depletion increased dorsal striatal responses

during rejection of unfair offers, and the extent to which

depletion affected striatal responses was correlated with

the extent to which depletion affected choices [43].

These findings suggest that serotonin depletion increased
www.sciencedirect.com
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the instrumental goal value of punishing others. This goal

value could arise from a desire to enforce social norms, or

alternatively, a desire to harm people who violate those

norms. Two recent studies suggest the latter motive

constitutes a driving force in punishment behavior by

showing that people are willing to (financially) harm

unfair actors even in the absence of opportunities for

norm enforcement. Researchers compared punishment of

unfair behavior under two conditions. In the ‘open’ con-

dition, the target of punishment both lost money and also

learned that he had been punished; ‘open’ punishment

therefore satisfies both a motive to harm and a motive to

enforce social norms. In the ‘hidden’ condition, however,

the target of punishment lost money but never learned

that he had been punished. Thus, ‘hidden’ punishment

satisfies only a motive to harm. Results showed that

people used hidden punishment nearly as much as open

punishment, suggesting that a motive to harm norm

violators explains most of the variance in punishment

behavior [50,51], an idea that is consistent with the

observation of increased punishment behavior in psycho-

paths [52]. This suggests that serotonin’s effects on

punishment may stem from a modulation of the valuation

of harming others, with impairments in serotonin function

resulting in people placing a less negative value on

harming others, and vice versa. More generally this could

reflect a positive relationship between serotonin function

and concern for others’ welfare [38]. Recent studies

provide additional support for this idea, showing that

enhancing serotonin neurotransmission (with tryptophan

supplementation or MDMA) makes people more gener-

ous and cooperative [53–56].

Taken together, these findings support a role for serotonin

in harm aversion, or a preference to avoid harming others

[57,58]. Consistent with this idea, violent, and aggressive

behavior is linked to reduced serotonin function [39�,59].

Patients with borderline personality disorder, character-

ized by unstable social relationships, impulsive aggression,

and self-harm, show reduced serotonin metabolism in the

prefrontal cortex [60]. In healthy people, deciding whether

to harm others engages the amgydala, anterior cingulate

cortex and insula [61], regions densely innervated by

serotonin [62], and functionally abnormal in antisocial

behavior [63]. Enhancing serotonin neurotransmission

with SSRIs reduces the expression of aggression [64,65]

and amplifies the influence of harm aversion in hypotheti-

cal moral dilemmas [45].

How might serotonin modulate harm aversion? One pos-

sibility, following from the Pavlovian aversive inhibition

mechanism outlined above, is that aversive social stimuli

such as distress cues inhibit the performance of harmful

behaviors. Indeed, this idea aligns with early work on

harm aversion, which proposed a violence inhibition mecha-
nism whereby distress cues suppress the behavioral ex-

pression of aggression [66]. Thus, reduced serotonin
www.sciencedirect.com 
function could facilitate aggressive, harmful behavior

by reducing the inhibitory impact of Pavlovian aversive

predictions (in this case, bad outcomes to others) on the

implementation of harmful behaviors. Alternatively, sero-

tonin might influence harmful behavior by impacting the

valuation of harmful decisions. The studies reviewed so

far cannot readily distinguish between these two mecha-

nisms, as they did not explicitly separate action require-

ments from choice values.

A recent study investigated directly how serotonin mod-

ulates both the valuation and implementation of harmful

decisions for oneself and others. Participants were invited

to trade off profits for themselves against painful electric

shocks for either themselves or another person. Compu-

tational models of choice quantified individuals’ harm

aversion as the exchange rate between money and pain.

Initial studies showed that in this setting harm aversion

for others was greater than harm aversion for oneself, with

participants willing to pay nearly twice as much money to

prevent pain to others than themselves, probably reflect-

ing moral concerns [58]. Subsequent work combined this

paradigm with a pharmacological manipulation of seroto-

nin to investigate the effects of enhancing serotonin

neurotransmission on harm aversion for self and others.

Crucially, on half the trials participants could avoid harm-

ing themselves or others by withholding a motor re-

sponse, and on the other half of trials participants

could avoid harming themselves or others by making a

motor response. Participants given a single dose of the

selective serotonin reuptake inhibitor citalopram were

willing to pay nearly twice as much money to prevent

pain to both themselves and others, and this effect was

evident regardless of action requirements [67�]. As with

the work on probabilistic reversal learning [19�], the

effects of manipulating serotonin were doubly dissociable

from the effects of manipulating dopamine with levodo-

pa, which abolished people’s tendency to avoid harming

others more than themselves. Thus, enhancing serotonin

transmission had a general effect on increasing the avoid-

ance of harm, regardless of the target of that harm and

regardless of whether harm avoidance occurred via an active

or passive motor response, and these effects were selective

to serotonin manipulation. The findings suggest that sero-

tonin influences social behavior through a non-social effect

on aversive processing, consistent with serotonin’s role in

affective decision-making. However, notably, these find-

ings argue against the possibility that serotonin modulates

harm aversion via Pavlovian-induced behavioral inhibition

of action. If serotonin increases harm aversion via an inhibi-

tory effect of Pavlovian aversive predictions on the imple-
mentation of harmful actions, then citalopram would have

increased harm aversion only in trials where harm occurred

via an active motor response. The fact that citalopram

increased harm aversion regardless of action requirements

instead suggests a serotonergic modulation of the valuation
of harmful decisions themselves.
Current Opinion in Behavioral Sciences 2015, 5:64–70
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Conclusion
The diversity of experimental findings linking serotonin

function with various aspects of decision-making is a

testament to the complexity of the serotonin system

and its multifarious behavioral functions. Nevertheless,

a few common themes emerge. Some of the social effects

of serotonin can be understood as reflecting non-social

affective processes concerning the valuation of aversive

outcomes. Serotonin appears to play a critical role in

situations where appetitive and aversive values must

be integrated to produce an appropriate behavioral re-

sponse, for example when making instrumental responses

to gain rewards in the presence of punishment cues (as in

PIT), or when making tradeoffs between profit and pain

for oneself and others. In the affective domain, converg-

ing evidence points to a role for serotonin linking aversive

Pavlovian predictions with behavioral inhibition, an idea

already present in very early theories of serotonin func-

tion [7]. However, this hypothesis seems less suitable for

organizing the effects of serotonin on social decision-

making, where serotonin appears to be more involved

in modulating the valuation of decisions rather than the

behavioral implementation of those decisions.

Recent work employing computational models that link

decisions and response times has revealed an intimate

relationship between valuation and vigor: smaller differ-

ences in subjective value between choice options are

associated with slower decisions [68,69]. Thus, serotoner-

gic effects on value could masquerade as effects on motor

responses in experiments where value is not explicitly

measured but only inferred indirectly through observa-

tion of behavioral responses. An open question, therefore,

concerns the extent to which serotonin modulates the

valuation of appetitive and aversive outcomes them-

selves, the valuation of actions that lead to those out-

comes, or the influence of appetitive and aversive

predictions on action selection. The fact that these factors

are so often correlated in behavioral paradigms has so far

eluded a straightforward picture of results. Future work in

this area therefore crucially depends on the development

of paradigms that can convincingly disentangle these

components of decision-making in both affective and

social contexts.
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