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SUMMARY

Serotonin and dopamine are speculated to subserve
motivationally opponent functions, but this hypothe-
sis has not been directly tested. We studied the role
of these neurotransmitters in probabilistic reversal
learning in nearly 700 individuals as a function of
two polymorphisms in the genes encoding the sero-
tonin and dopamine transporters (SERT: 5HTTLPR
plus rs25531; DAT1 30UTR VNTR). A double dissoci-
ationwas observed. TheSERT polymorphism altered
behavioral adaptation after losses, with increased
lose-shift associated with L0 homozygosity, while
leaving unaffected perseveration after reversal. In
contrast, the DAT1 genotype affected the influence
of prior choices on perseveration, while leaving
lose-shifting unaltered. A model of reinforcement
learning captured the dose-dependent effect of
DAT1 genotype, such that an increasing number of
9R-alleles resulted in a stronger reliance on previous
experience and therefore reluctance to update
learned associations. These data provide direct evi-
dence for doubly dissociable effects of serotonin
and dopamine systems.

INTRODUCTION

Dopamine and serotonin have both long been implicated in

behavioral control and decision-making. One central idea is

that these neurotransmitters are involved in learning from rein-

forcement. This theory is most strongly supported by experi-

mental findings on dopamine, where notable progress has

been made in the last two decades. Groundbreaking electro-

physiological studies showed that dopaminergic neurons in the

midbrain increase firing to outcomes that exceed expectations

(Fiorillo et al., 2003; Schultz et al., 1997). Advances in theoretical

modeling then envisioned phasic dopamine responses as a rein-

forcement signal, ‘‘stamping in’’ successful operant responses
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(Frank et al., 2004; Houk et al., 1995; Montague et al., 1996;

Suri and Schultz, 1999). Pharmacological and fMRI studies in

humans support this idea, showing that dopaminergic drugs

enhance relative learning from reward compared to punishments

in both healthy individuals (Cools et al., 2009) and patients with

Parkinson’s disease (Cools et al., 2006; Frank et al., 2004).

Although there is no similarly well-developed theoretical or

formal framework for guiding and interpreting empirical research

on serotonin, serotonin has been most closely associated with

learning from negative events. For example, after administration

of the serotonin reuptake inhibitor citalopram, healthy subjects

shift away more frequently from a stimulus that resulted in a

loss (Chamberlain et al., 2006), and lowering levels of serotonin

using dietary tryptophan depletion selectively improves the pre-

diction of punishments (Cools et al., 2008b). More specifically,

serotonin has been associated with the inhibition of punished

behaviors (Crockett et al., 2009; Dayan and Huys, 2008; Deakin

and Graeff, 1991; Soubrie, 1986). Taken together, these results

support the notion that dopamine and serotonin are involved in

learning from reward and punishments, respectively (although

see e.g., Maia and Frank, 2011; Palminteri et al., 2012; Robinson

et al., 2010). It was recently suggested that their actions are char-

acterized by mutual opponency (Boureau and Dayan, 2011;

Cools et al., 2011; Daw et al., 2002).

However, both neuromodulators have also been implicated in

another key set of behaviors, namely the ability to flexibly change

behavior. In order to successfully interact with our environment,

it is important to be able to ignore rare events in a stable environ-

ment, yet to flexibly update our beliefs when our environment

changes. Such an optimal balance of cognitive stability and flex-

ibility depends on successful integration the consequences of

our actions over a longer timescale. Perseverative behavior is

the tendency to stick to a particular choice independent of, or

even in spite of, contrary evidence and reflects the failure to flex-

ibly adapt. Dopaminemanipulations in both rodents and humans

selectively altered behavior and neural processes associated

with the ability to reverse previously rewarded choices (Boulou-

gouris et al., 2009; Clatworthy et al., 2009; Cools et al., 2009;

Dodds et al., 2008; Rutledge et al., 2009). With respect to sero-

tonin, antagonists of the 2A and 2C receptors affected the num-

ber of errors during reversal before reaching a preset learning
.
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Figure 1. Probabilistic Reversal Learning Paradigm

(A) On each trial, two stimuli were presented in two out of four randomly

selected locations. The subject was instructed to select the usually rewarded

stimulus, and feedback was presented in the form of positive or negative

emoticons. Win-stay trials were trials on which the subject picked the same

stimulus as they did on the previous, rewarded trial (e.g., trial 2 and 3 in A).

Lose-shift trials are trials on which the subject shifted response after a pun-

ishment (e.g., trial 4).

(B) During acquisition, the correct stimulus (here yellow) resulted in a 70:30

ratio of reward/punishment. Choosing the incorrect stimulus (blue) led to the

reverse (30:70) ratio. After 40 trials, contingencies reversed and the subject

had to learn to now select the blue stimulus. Any trial in which the ‘‘incorrect’’

stimulus was chosen was defined as an error trial.
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criterion (Boulougouris et al., 2008; Boulougouris and Robbins,

2010), and serotonin depletion in the orbitofrontal cortex in

nonhuman primates increased the number of perseverative

errors on a deterministic reversal learning task (Clarke et al.,

2007). These two functions of learning from reinforcement versus

behavioral flexibility can perhaps be reconciled if we view

perseveration as another manifestation of reinforcement-like

effects that are accumulated during the prereversal phase. In

other words, they might provide a different window on the

same underlying functionality.

In the present study, we take a behavioral genetics approach

to study the role of serotonin and dopamine in human decision

making. The advantage of this approach over pharmacological

studies is that it allowed us to test effects of both transmitter

systems within single individuals, in a single session and in

a large cohort. In this study, we pit against each other poly-

morphisms that affect dopamine and serotonin function to

assess their dissociable and opponent roles in decision making.

We investigate effects of polymorphisms in the regulatory re-

gions of the serotonin and dopamine transporter genes: the

SLC6A4/SERT/5HTT-length polymorphism (5HTTLPR) combi-

nation with a single nucleotide polymorphism within the repeat

(rs25531) and a variable repeat in the 30 regulatory region of

SLC6A3/DAT1. Although the exact functional consequences

of these polymorphisms on serotonin and dopamine transmis-

sion are as yet unclear, evidence frommultiple sources confirms

that these polymorphisms can be used to investigate effects of

the dopamine and serotonin systems. In vitro, the DAT1 and

SERT polymorphisms cause natural variation in the expression

levels of these transporters (Hu et al., 2006; Mill et al., 2002).

In addition, PET/SPECT studies in humans have shown reduced

SERT binding in S0-carriers (Willeit and Praschak-Rieder, 2010)

and higher striatal DAT availability in carriers of the 9-repeat

(9R) allele of DAT1 (Spencer et al., 2013; van de Giessen

et al., 2009; van Dyck et al., 2005, although see Costa et al.,
Ne
2011). Furthermore, the effects of these polymorphisms on

behavior and brain function as well as their association with psy-

chiatric disorders tend to follow the functional dimensions asso-

ciated with serotonin (Caspi et al., 2010; Hariri and Holmes,

2006; Lesch et al., 1996; Roiser et al., 2009) and dopamine

(Aarts et al., 2010; Forbes et al., 2009; Franke et al., 2010; Gizer

et al., 2009).

To independently assess the effects of serotonin and dopa-

mine on both immediate effects of reinforcement on subsequent

choices and on longer-term behavioral flexibility, we use a prob-

abilistic reversal learning paradigm. First, to examine direct

outcome reactivity, we assess the tendency to locally shift re-

sponding immediately after negative feedback and to stick to a

response after positive feedback. We hypothesize that the

SERT polymorphism will alter lose-shifting, whereas DAT1 vari-

ation will affect win-staying. Such behavior would be a direct

manifestation of reinforcement properties hypothetically associ-

ated with either neurotransmitter, as embodied in Thorndike’s

law of effect (Thorndike, 1911) or in computational models

such as temporal difference learning.

Second, we analyze the effects of the SERT and DAT1 poly-

morphisms on choices after reversal to assess perseveration.

As mentioned above, perseveration might be an additional

consequence of reinforcement, separate from any more local

effects on win-stay/lose-shift behavior. In a reversal task, per-

severation on a previously favored alternative following reversal

might reflect the repeated reinforcement of that response accu-

mulated during the prereversal phase. If a strongly stamped-in

response tendency takes repeated trials before it is unlearned,

then a reinforcement mechanism such as that associated with

dopamine would give rise to perseveration at time of reversal.

Another possibility is that perseveration occurs due to a failure

to learn from the negative feedback that now follows a previously

rewarded stimulus. We compare such potential perseveration

mechanisms by fitting computational learning model to our

data and subsequently test whether their estimated parameters

are affected by genotype.

RESULTS

Subjects (n = 810) completed a probabilistic reversal learning

task (see Table S1, available online, for demographic informa-

tion). On each trial, they selected one of two stimuli, which led

probabilistically to either reward or punishment (Lawrence

et al., 1999) (Figure 1). During the first 40 trials, stimulus A was

usually rewarded (70%), but sometimes punished (30%), and

vice versa for stimulus B. For the second 40 trials, these con-

tingencies were reversed. Subjects were instructed to select

the usually rewarded stimulus (for details see Experimental

Procedures).

All subjects were genotyped for SERT and DAT1 polymor-

phisms. Full behavioral, genetic, and demographic data were

available for 685 participants, from which three subjects

were excluded for failure to perform the task (for details on

genotyping and exclusions see Supplemental Experimental

Procedures). There was no significant difference between

genotypes in gender distribution (both polymorphisms: c2(2) <

4, p > 0.1).
uron 80, 1090–1100, November 20, 2013 ª2013 Elsevier Inc. 1091



Figure 2. Win-Stay/Lose-Shift and Persev-

eration Results

(A–D) Win-stay/lose-shift: L0-homozygotes of the

SERT polymorphism showed significantly more

lose-shifting than S0-carriers. (A) There was no

effect of DAT1 on lose-shifting. (B) There was no

effect of SERT or DAT1 on win-stay. (C and D)

Perseveration: a higher 9R:10R allele ratio was

associated with more perseveration, whereas

there was no effect of DAT1 on chance error rate.

There was no effect of SERT on perseverative or

chance error rates. Mean ± SEM. *p < 0.05, **p <

0.01, ***p < 0.005.

(E) There was an interaction of number of correct

choices during acquisition and DAT1 poly-

morphism, the relationship between choice history

and perseveration reversed as a function of

genotype.

(F) There was a negative effect of choice history on

chance error rates, but no interaction with DAT1.

See also Figure S1 and Tables S2 and S3.
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Probabilistic Reversal Learning
Our primary analysis focused on three main measures of inter-

est: win-staying, lose-shifting (both as a function of the previ-

ous trial), and perseveration. Perseverative errors were defined

as any sequence of two or more errors during the reversal

phase. These three measures were included as within-subject

measures in a repeated-measures ANOVA, together with the

between-subject factors gender and learning criterion attain-

ment, and covariates age and level of education (for control

analyses of basic learning measures and covariates, see
1092 Neuron 80, 1090–1100, November 20, 2013 ª2013 Elsevier Inc.
Supplemental Experimental Procedures,

Figure S1, and Table S2). Both SERT

and DAT1 selectively affected these

three measures (SERT: F(3.7, 1189) =

3.38, p = 0.011, h2 = 0.010; DAT1:

F(3.7,1189) = 3.07, p = 0.019, h2 =

0.09). Below, we explore the nature of

these main effects of measures of

interest.

Win-Stay/Lose-Shift

Consistent with our hypothesis, SERT

affected the likelihood of shifting re-

sponses after punishment (F(20,661) =

5.80, p = 0.003, h2 = 0.017; Figure 2A).

Pairwise post hoc comparisons revealed

that L0 homozygotes exhibited increased

lose-shift rate relative to the S0 carriers,
whereas there was no difference

between the S0 homozygotes and the het-

erozygotes (L0/L0 > S0/S0, p = 0.001; L0/L0 >
S0/L0, p = 0.033; S0/S0 versus S0/L0,
p = 0.15). Indeed, grouping S0-carriers
versus L0-homozygotes does not alter

significance (F(15,666) = 9.28, p = 0.002,

h2 = 0.014). Conversely, there was no

effect of SERT on win-stay rates (Fig-

ure 2B). In contrast to our hypothesis,
DAT1 did not affect win-stay (or lose-shift) rates (Figures 2A

and 2B). There were also no gene-gene interactions between

the two polymorphisms for either win-stay or lose-shift (all

F(20,661) < 1.5, p > 0.3, h2 < 0.001). There was no effect of

gender, age, or education on win-stay or lose-shift (all tests:

F(20,661) < 3, p > 0.1).

As mentioned in the introduction, probabilistic discrimination

and reversal tasks require subjects to ignore rare events in a

stable environment, yet adjust their responses when the environ-

ment has changed. Therefore, we next assessed whether the
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SERT genotype affected response adaptation after any negative

feedback, or whether this was specific to either the feedback

validity or task epoch (acquisition or reversal). There was no

interaction of SERT genotype with feedback validity (F(2,668) =

0.5, p = 0.6, h2 = 0.001), and SERT genotype significantly

affected lose-shift whether feedback was invalid (F(2,668) =

4.8, p = 0.009, h2 = 0.014) or valid (F(2,668) = 5.3, p = 0.005,

h2 = 0.016). This is not surprising, given that subjects are not

aware of feedback validity. There was also no interaction of

SERT genotype and task phase (F(2,668) = 1.9, p = 0.15, h2 =

0.006), and the effect of SERT genotype on lose-shift was signif-

icant during both the acquisition phase (F(2,668) = 6.3, p = 0.002,

h2 = 0.018) and the reversal phase (F(2,668) = 3.1), p = 0.047,

h2 = 0.009).

Perseveration

A hierarchical regression analysis showed that DAT1 genotype

significantly predicted the proportion of perseverative errors dur-

ing the reversal phase, such that a higher ratio of 9R:10R alleles

led to an increased number of perseverative errors (b = 0.084,

t(671) = 2.22, p = 0.029) (Figure 2C). This effect was specific to

perseveration, as evidenced by the finding that there was no

effect of DAT1 on chance errors (t(671) = 0.07, p = 0.95) (Fig-

ure 2D), which were defined as single errors that occurred

between two correct responses.

Furthermore, there was an effect of DAT1 genotype on the

interaction between perseveration and the choice history (rate

of correct responses during acquisition; b = 0.10, t(671) = 2.72,

p = 0.007) (Figure 2E), in the absence of a main effect of

choice history on perseverative error rate (t(671) = 0.44, p =

0.66). Again, there was no such interaction for chance errors

(t(671) = 1.5, p = 0.14).

The DAT1 effects of choice history on perseveration were

characterized by a dose-dependent reversal of their relationship:

in 9R homozygotes perseveration increased with increasing

number of correct choices during acquisition (b = �0.34,

t(40) = 2.6, p = 0.013), whereas in heterozygotes there was no

association (b = 0.061, t(221) = 0.89, p = 0.38), and in 10R

homozygotes perseveration marginally decreased (b = �0.092,

t(400) =�1.8, p = 0.069).We verified this effect against sensitivity

to outliers using a robust regression, which confirmed the

dose-response effects (9R9R, b = 0.062, t(40) = 2.31, p =

0.026; 9R10R, b = �0.008, t(221) = �0.61, p = 0.54; 10R10R:

b = �0.024, t(400) = �2.7, p = 0.007).

The SERT genotype did not affect any type of reversal errors

(p > 0.5) (Figures 2C and 2D). In addition, sex, age, or education

covariates did not explain a significant proportion of variance in

any of the reversal error scores (R2 < 0.01, F(3,678) < 1.8; p > 0.1).

In summary, the present data set reveals a double dissocia-

tion between effects of the SERT and DAT1 genotypes on

reversal learning, with SERT altering global lose-shifting and

DAT1 altering postreversal perseveration. In a final ANOVA,

we ascertained that the relative difference in lose-shift and

perseveration Z scores was predicted by the difference in

SERT and DAT1 genotype (R2 = 0.16, F(5,676) < 25.5; p =

0.009). This significant interaction confirms the double dissocia-

tion between the two effects, with SERT affecting lose-shifting

but not perseveration, and DAT1 affecting perseveration but

not lose-shifting.
Ne
Computational Model
We next used computational models to investigate the mecha-

nisms that might underlie the DAT1 genotype results. Although

DAT1 shows robust effects in our data set, the measure of

perseveration to which it is related is relatively opaque, in

contrast to the more direct measure of trial-by-trial switching

with which SERT was associated.

This opaqueness results from the fact that (perseveration)

error scores require some form of ‘‘topdown’’ definition or knowl-

edge by the experimenter, e.g., when the reversal, unbeknownst

to the subject, has occurred. This has hampered comparison of

previous studies of reversal learning studies, which have

reported a veritable zoo of reversal error measures, such as

errors to criterion, total reversal errors, maintenance errors,

perseverative errors, learning errors, and chance errors. Models

of reinforcement learning can provide a more principled

approach to assessing behavior, because they are independent

of such external definitions that the subject is unaware of

(learning criterion, point of reversal). Instead, like for win-stay/

lose-shift measures, they take into account only past choices

and observed outcomes.

We aimed to understand the process or mechanism underly-

ing the effect of DAT1 on perseveration using a reinforcement

learning model to examine how perseveration can arise from a

learning process integrating reward over a longer timescale.

For simplicity, we do not consider the more transparent SERT

effects on lose-shift behavior here, although we have verified in

simulations not reported here that our model captures them

when it is augmented with an additional parameter that directly

controls switching after losses, without affecting long-term value

integration.

In the context of reinforcement learningmodels, two features of

the DAT1 effects are puzzling. First, the effect is selective to the

reversal phase, and second, the relationship between perfor-

mance in the acquisition and reversal phases reverses sign

depending on genotype. A standard account such as a tempo-

ral-difference learning model predicts neither of these features

because learning during both phases is driven by a common

mechanism. Unaugmented, such a model predicts that errors

on either phase should track one another. In particular, the

learning rate parameter affects the acquisition and reversal

equally, by speeding up or slowing down acquisition and updat-

ing of associations. The inverse temperature parameter also

affects errors in both phases equally, where a decrease will lead

to lead to more random (i.e., less value-driven) choices globally.

Accordingly, we considered a model that generalizes tempo-

ral-difference learning to include an ‘‘experience’’ weight param-

eter (r), which decouples acquisition and reversal by allowing

the balance between past experience and new information

to increasingly tip in favor of past experience. This feature

is derived from the experience-weighted attraction (EWA)

model (Camerer and Ho, 1999), although we do not include

additional features from that model that relate to its use in

modeling multiplayer games. The action of the experience

weight parameter captures the intuition that reinforcement

accumulated over the course of the acquisition phase could

make it relatively more difficult to adjust when the contingencies

are reversed, leading to perseveration. The experience weight
uron 80, 1090–1100, November 20, 2013 ª2013 Elsevier Inc. 1093



Table 1. Model Parameters Used to Fit the EWA and RP Models

Model Parameter Prior Constraint Median Range (25%–75%) xpi p(mijdata, m)

EWA 1 0.694

f b (1.2,1.2) 0 < f < 1 0.33 0.10–0.62

r b (1.2,1.2) 0 < r < 1 0.62 0.28–0.88

b Gaussian (0,10) �N % b % N 4.69 2.62–7.35

RP 0 0.305

arew b (1.2,1.2) 0 < arew < 1 0.73 0.36–0.93

apun b (1.2,1.2) 0 < apun < 1 0.63 0.25–0.84

b Gaussian (0,10) �N % b % N 4.22 2.13–7.65

For each parameter we used weakly informative priors. Median and range of the fitted parameters across all subjects. xpi, exceedance probability for

model i.

Neuron

Dopamine and Serotonin in Reversal Learning
parameter interpolates between a standard temporal-difference

learningmodel (r = 0), where predictions are always driven by the

most recent experiences, and a model (r = 1) that weights all

trials in the experiment equally, causing all the experience

accumulated during the acquisition phase to produce sluggish

reversal.

For comparison, we tested a more standard reinforcement

learning model to determine whether the experience weight

parameter is superior in capturing behavioral strategies and

genotypic effects. This model is also based on the classic

Rescorla-Wagner model of conditioning, but in this case,

expanded with separate learning rates for reward (arew) and pun-

ishment (apun) trials (‘‘RP model’’) (Frank et al., 2007). If DAT1

were selectively related to (apun), then this might provide a

different explanation for the gene’s selective relationship to

perseveration following reversal, if errors during acquisition

relate more to positive feedback and during reversal to negative

feedback. In particular, if the string of punishments observed

immediately after reversal has little effect, then it will take longer

to update the value of the chosen stimulus.

Model Comparison and Parameter Inference

After fitting both models on a trial-by-trial basis to each indi-

vidual, Bayesian model comparison showed that the EWA

model was superior to the RP model (Table 1, exceedance

probability = 1.00).

Next, we used the estimated model parameters from the win-

ning EWA model to simulate choices. This cycle of fitting and

resimulation allowed us to analyze these simulated choices in

the same way we analyzed the original data to assess whether

the fitted model is able to capture the observed differences as

a function of DAT1 genotype, and if so, how. First we visualized

the overall learning curves of the simulated subjects. Figure 3A

shows the trial-by-trial estimated probability of choosing the

stimulus that was correct (i.e., 70% rewarded) during acquisition

and incorrect during reversal. This figure confirms that themodel

captures the differential effects of DAT1 on perseveration in

the absence of any differences during acquisition. With an

increasing number of 9R alleles, the simulated subjects are

more likely to perseverate, i.e., more likely to choose the origi-

nally correct stimulus during reversal.

We subsequently analyzed the choices simulated by the

model in the same manner as the original data. Using the fitted

parameters, the model replicated all the DAT1-related behaviors
1094 Neuron 80, 1090–1100, November 20, 2013 ª2013 Elsevier Inc
shown by our participants. There was a significant main effect of

DAT1 on the perseverative error rate (Figure 3C) (b = �0.02,

t(671) = �2.7, p = 0.007), in the absence of such an effect on

the chance error rate (t(671) = �0.48, p = 0.6) or on win-stay or

lose-shift rates (both: F(17,664) < 1, p > 0.5, h2 < 0.002). In addi-

tion, themodel also captured the dose-dependent reversal of the

effect of the choice history on perseveration (Figure 3D) (DAT13

choice history: t(671) = 4.9, p < 0.001; 9R9R, b = 0.144, t(40) =

4.4, p < 0.001; 9R10R, b = 0.009, t(221) = 0.74, p = 0.46;

10R10R: b = �0.024, t(400) = �3.22, p = 0.001).

To understand what features of the model were producing

the behavioral effects, we examined how the best fitting param-

eters varied with genotype. Jonckheere’s test revealed that the

experience weight r significantly increased with the number of

9R alleles (J = 53,943, Z = �2.88, p = 0.004) (Figure 3B), in

absence of any gene-dose-dependent effects on the other

parameters (b: J = 60,179, Z = �0.44, p = 0.7; 4: J = 61,542,

Z = 0.09, p = 0.9).

Finally, we conducted two control analyses on simulated data

and model parameters. First, we found no significant effects of

SERT genotype on the three parameters of the EWA model

(Mann-Whitney U on L-homozygotes versus S0-carriers; b: U =

42,147, Z = �0.6 p = 0.5; 4: U = 40,911, Z = �1.2, p = 0.24;

r: U = 42,214, Z = �0.6, p = 0.6; see also Figure S2). Second,

we established that there were no significant effects of DAT1

genotype in the RP model on reward or punishment learning

rates, or a difference between these two. There were no effects

of DAT1 on any of the parameters. (apun: J = 61,372, Z = 0.02,

p = 0.9; arew: J = 63,672, Z = 0.91, p = 0.4; arew-apun :J =

63,038, Z = 0.67, p = 0.5; b: J = 60,417, Z = �0.35, p = 0.7).

DISCUSSION

The present study revealed a double dissociation between sero-

tonin and dopamine influences on reinforcement learning by

comparing the effects of genetic polymorphisms in SERT and

DAT1. We show that the SERT polymorphism selectively affects

immediate lose-shift behavior, whereas variation in the DAT1

polymorphism alters perseveration in the reversal phase. It is

important to keep in mind the interpretational difficulty in terms

of the direction of these effects, given that the exact functional

consequences of the SERT and DAT1 polymorphisms as yet

unclear. Nonetheless, these findings speak against a directly
.



Figure 3. EWA Model Simulation

The choices simulated by the model using the esti-

mated parameters replicate the observed DAT1

effects in perseveration.

(A) Trial-by-trial estimated probability of choosing

the initially correct stimulus, averaged by DAT1

genotype. There is no difference during acquisition,

but at reversal, an increasing 9R:10R ratio leads to

sustained choice of the initially correct stimulus.

i.e., perseveration.

(B) This effect is mediated by a selective change in

the experienceweight parameter r, in the absence of

a change in any of the other two parameters.

Importantly, r determines how quickly the weight of

past experiences increases Mean ± SEM. *p < 0.05,

**p < 0.01, ***p < 0.005.

(C and D) The model simulations replicate the dose-

dependent effect of the DAT1 polymorphism on the

perseverative error rate in absence of an effect on

chance error rate (C), as well as the interaction with

the choice history (D) (compare Figures 2C–2E).

(C) Mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.005.

See also Figure S2 for SERT.
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opponent role of serotonin and dopamine and rather point to dif-

ferential processes of action/outcome integration that take effect

on a different timescale.

SERT, Serotonin, and Lose-Shift
Allelic variation in SERT predicted the likelihood of behavioral

adaptation after punishment but not reward. This effect was

not specific to either the validity of the feedback or the phase

of the task, indicating that it was a global effect on behavioral

adaptation after negative feedback. The increased tendency to

shift responses after punishment in L0-homozygotes without

influencing behavior following reward is in line with opponency

models that suggest a specific role for serotonin in behavioral

adaptation in the face of punishment (Cools et al., 2011; Daw

et al., 2002). L0-homozygotes have been shown to exhibit

increased SERT binding (Willeit and Praschak-Rieder, 2010),

which might lead to decreased levels of extrasynaptic serotonin.

If this is the case, our results echo findings of enhanced lose-shift

behavior after decreased brain serotonin levels, either by exper-
Neuron 80, 1090–1100, N
imental manipulation (Bari et al., 2010;

Chamberlain et al., 2006) or as a conse-

quence of hypothesized reductions in

depression (Murphy et al., 2003). They

also agree with the enhanced punishment

prediction observed after tryptophan

depletion, which lowers central serotonin

levels (Cools et al., 2008b). The present re-

sults disambiguate contradictory effects in

previous reversal learning studies with

smaller sample sizes (Izquierdo et al.,

2007; Jedema et al., 2010; Vallender

et al., 2009), confirming a clear role for

SERT in immediate behavioral adaptation

after losses. Note that the general nature

of this effect explains why there are no
global differences in task performance between the different

SERT genotypes: although L0- homozygotes were more likely

to choose the incorrect stimulus after a probabilistic punishment,

they were alsomore likely to switch to the correct stimulus after a

punished incorrect choice.

Therewas no evidence for an influence ofSERT on the reversal

aspect of the task, in contrast to previous neurochemical studies

with nonhuman primates (Clarke et al., 2007; Walker et al.,

2009). Thisdiscrepancymay reflect differential degreesof seroto-

nin depletion in the different studies: serotonin depletion with the

neurotoxin 5,7-DHT in marmosets produces very severe deple-

tion, in contrast to the presumably subtle differences in baseline

serotonin levels through genetic polymorphisms. Such different

manipulations may well have qualitatively different effects on

for example tonic versus phasic firing (Cools et al., 2008a).

DAT1, Dopamine, and Perseveration
DAT1 allelic variation specifically affected performance during

the reversal phase, in the absence of any differences during
ovember 20, 2013 ª2013 Elsevier Inc. 1095
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acquisition. During reversal, a higher 9R:10R allele ratio led to

both an overall increase in perseverative errors, as well as a

change in the influence of the choice history on perseveration.

Importantly, there was no overall difference between DAT1

genotypes in terms of acquisition scores. This dissociation

between acquisition and reversal is difficult to capture in stan-

dard computational models of error-driven learning, which

essentially describe a local (although incremental) win-stay/

lose-shift preference adjustment mechanism by which both

initial acquisition and its reversal proceed equivalently.

We were able to explain these effects on perseveration and its

interaction with choice history in such a model by including an

additional feature derived from the experience-weighted attrac-

tion model (Camerer and Ho, 1999). In this model, the relative

weight of past experience with respect to incoming information

increased every time a particular action was selected, which pro-

duced an increased reliance on current beliefs over new informa-

tion. The rate of increase was determined by the experience

weight decay parameter r. From the fitted model parameters,

it appeared that DAT1 allelic variation selectively affected the

size of the experience weight decay, such that the parameter

increased with an increasing number of 9R alleles. This increase

resulted in a larger weight of past experience at the time of

reversal for stimuli that had often been chosen, whichmade sub-

jects more reluctant to update the strongly held belief about the

previously rewarded stimulus, causing perseveration. Computa-

tionally, this effect can be understood as a learning rate that

declines more rapidly with experience, as in uncertainty-based

learning models such as the Kalman filter (Dayan et al., 2000).

However, perhaps more closely related to notions of dopamine

as a reinforcement signal, it can conversely be understood as

an increasing tendency for previous learning to accumulate

rather than decay, progressively overshadowing new learning.

This may embody an aspect of the colloquial notion of reinforce-

ment ‘‘stamping in’’ choices that standard temporal difference

models fail to capture. Interestingly, there was no similar effect

ofDAT1 genotype on overall win-stay behavior. This observation

suggests that the DAT1 variants do not affect local choice

adjustment per se. Perseveration and win-stay rates both

seem to represent indices of the strength of reinforcement, in

the first case measured by difficulty reversing the learned knowl-

edge, and in the latter by the immediate effect on subsequent

trials. Although these two effects are coupled by a single learning

mechanism in standard models, they are dissociated in our data.

A crucial difference is that the win-stay rate is a local measure of

the effect of reward only one trial back in time, whereas persev-

eration is by definition a measure of their longer-term cumulative

effects. This dissociation may also relate to (dorsolateral) striatal

dopamine’s hypothesized role in habitual behavior (Balleine and

O’Doherty, 2010; Daw et al., 2005; Everitt and Robbins, 2005),

and to the idea that in humans, local choice adjustments (e.g.,

win-stay) in choice tasks of this sort relate more to an explicit,

working memory-based mechanism that may mask underlying

incremental reinforcement learning (Collins and Frank, 2012).

Another possibility about how local adjustment and reversal

might relate is that a deficit in learning from punishments (relative

to reward) might exhibit itself as an apparently selective difficulty

at reversal time, when a cluster of negative feedback occurs.
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However, although this mechanism might predict dissociation

between errors in reversal versus overall errors in initial acquisi-

tion, it does not seem to provide a good explanation of the

observed pattern of DAT1 effects. This is because such a mech-

anism would couple the reversal deficit with global lose-shifting,

and these are doubly dissociated by ourDAT1 and SERT effects.

Accordingly, the EWA model also provided a better overall fit to

choices than an alternative model involving differential learning

from reward and punishments.

An important interpretational caveat with the present study is

that the task has only two, mutually exclusive response options,

which makes it difficult to distinguish to what extent choice of

either option relates to its own perceived strength versus the

weakness of the other. For instance, it may not be definitively

possible to disentangle truly perseverative responding (in the

sense of a sustained affirmative tendency to seek the previously

reinforced option) from impairment in acquiring or sustaining a

response to the newly highly reinforced option. Nevertheless,

the best-fitting model here suggests that DAT1-related persev-

eration occurs due to large, sustained value on the previously

favored option. Future studies should test this model using a

task with a third option.

Notwithstanding these finer distinctions, our finding relating

DAT1 to reinforcement is in line with the conditioning literature

suggesting that dopamine potentiates responding to cues previ-

ously associated with reward. Specifically, studies in rodents

(Goto and Grace, 2005; Parkinson et al., 1999) have shown

that enhanced levels of dopamine potentiate responding to pre-

viously rewarded stimuli. Furthermore, dopaminergicmedication

in patients with Parkinson’s disease has been shown to impair

reversal learning (Cools et al., 2001), possibly due to abnormal

reward-related processing in the ventral striatum (Cools et al.,

2007). Interestingly, administration of the DAT blocker methyl-

phenidate resulted in similar impairment in healthy volunteers

depending on the degree to which the drug increased dopamine

release (Clatworthy et al., 2009). Thus, several lines of functional

evidence have associated higher levels of dopamine with

increased reward sensitivity and decreased behavioral flexibility.

This would concur with our finding if the 9R allele is accompanied

by higher dopamine activity or sensitivity, which is in line with

studies showing enhanced reward-related responses in the

ventromedial striatum in 9R carriers (Aarts et al., 2010; Dreher

et al., 2009).

Finally, a second puzzle with respect to the effects of theDAT1

genotype was that the relationship between performance during

acquisition and perseveration during reversals actually reverses

sign as a function of genotype. The computational model ex-

plains this as the tradeoff between two opposing effects. For

low r, as observed in 10R homozygotes, the computational

model approaches standard temporal difference learning. In

such a model, as discussed above, performance on the acquisi-

tion and reversal phases are coupled by a common, local adjust-

ment mechanism, with the degree of correct choices versus

errors in both phases determined by choice randomness (the in-

verse temperature) and the sluggishness of adjustment (the

learning rate). This produces a negative correlation between cor-

rect choices at acquisition and errors at reversal (equivalently, a

positive correlation between errors in either phase). However, as
.
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described above, for high r, as in the 9R genotype, the experi-

ence weighting mechanism produces the opposite effect. That

is, increased choice of the correct stimulus during acquisition

will lead to increased perseveration on reversal and therefore

predict a positive relationship between the two.

Conclusions
This study revealed a functional double dissociation between

the effects of polymorphisms in regulatory regions of the SERT

and DAT1 genes. We showed that within the same individuals,

SERT is involved in behavioral adaptation following losses,

whereas DAT1 plays a role in experience-based perseveration.

Our results provide strong and direct evidence for a sug-

gested, but hitherto untested, functional dissociation, but fail to

find a direct opponency between serotonin and dopamine

systems.

EXPERIMENTAL PROCEDURES

Subjects

This study was part of the Brain Imaging Genetics (BIG) project at the Donders

Institute for Brain, Cognition and Behavior, Radboud University Nijmegen. In

the current study, 810 healthy, predominantly right-handed, Caucasian, highly

educated subjects completed an online probabilistic reversal learning task

among a set of other tests (60.4% female; age 26.3 ± 11.1 years (mean ±

SD); see Table S1 for full demographic information). The study was approved

by the local ethics committee (CMO 2001/095) and written informed consent

was obtained from all subjects prior to participation.

Probabilistic Reversal Learning Task

Visual stimuli were probabilistically associated with positive (green, happy

emoticon) and negative (red, sad/angry emoticon) feedback (Figure 1). We

will refer to these positive and negative feedback events as ‘‘reward’’ and ‘‘pun-

ishment,’’ consistent with prior literature and the psychological definition of

their tendency to increase/reduce response tendencies. On each trial, two

stimuli were presented in two of four locations (left, right, top, or bottom of

screen) and the subject was asked to select the usually rewarded stimulus

with a mouse click. Choosing the correct stimulus (defined as the stimulus

chosen on the first trial) resulted in a 70:30 ratio of reward/punishment. The

incorrect stimulus resulted in the reverse (30:70) ratio. Thus, on 30% of trials

subjects received ‘‘misleading’’ feedback. After 40 trials the reinforcement

contingencies reversed, so that the frequently rewarded stimulus now became

frequently punished and vice versa. Each subject completed a pseudorandom

fixed sequence of 80 trials. Subjectswere instructed that the identity of the cor-

rect stimulus could change, but received no information as to how often such a

change might occur (for details see Supplemental Experimental Procedures).

Genotyping

Details of DNA extraction from the saliva samples and genotyping are

described in the Supplemental Experimental Procedures. For DAT1, two

alleles of interest were analyzed: the common 10R allele and the rarer 9R allele.

The insertion/deletion polymorphism in the SERT promoter region (5HTTLPR)

was genotyped for the long (S) or short (L) alleles in combination with the single

nucleotide polymorphism rs25531 A/G substitution in the same region. For the

behavioral analysis, we used a biallelic model, where the S allele was grouped

with the rare LG allele (indicated as S0), given that the G-substitution in the L

allele results in reduced expression more similar to the S allele (Hu et al.,

2006; Praschak-Rieder et al., 2007). LA alleles were indicated as L0. Given

the large sample size, all genotypes could be analyzed separately, which

enabled testing for dose-dependent gene effects.

Behavioral Data Analysis

In all analyses, sex, age, and education level were included as covariates of no

interest. The statistical significance threshold for all tests was p = 0.05, using a
Ne
Bonferroni correction where appropriate. To increase sensitivity, we did not

use a Bonferroni correction for any of the control analyses.

Using the c2 test, we assessed whether there were any differences between

genotype groups in the proportion of subjects passing the acquisition learning

criterion of eight consecutive correct responses, which we report in the Sup-

plemental Experimental Procedures, where we also report baseline effects

of task engagement/learning for both the pass and fail groups.

Behavioral Measures

Effects of reinforcement on subsequent choice were operationalized as the

probability of repeating responses after reward (‘‘win-stay’’) and shifting re-

sponses after punishment (‘‘lose-shift’’) (Figure 1A).

Errors during the reversal phase were divided into two types. Perseverative

errors were defined as two or more consecutive incorrect choices of the pre-

viously rewarded stimulus. Thus, perseverative errors required subjects to

erroneously stay with the previously correct stimulus, despite punishment.

The remaining errors during the reversal phase were defined as ‘‘chance

errors.’’ The number of correct choices during acquisition was used as a

measure reflecting the reinforcement history and value of the now incorrect

stimulus at the start of reversal, in other words, it reflected how ‘‘stamped

in’’ the choice of the initially correct stimulus was.

In a first analysis, win-stay, lose-shift, and perseveration rates were mean-

corrected and entered in a repeated-measures GLM to assess any differential

effects of the polymorphisms on these three measures. Learning criterion

attainment and gender were included as fixed factors of no interest, and age

and education were included as covariates of no-interest. The Huyn-Feldt

correction was used when significant nonsphericity was detected. After signif-

icant interactions of SERT and DAT1 with these behavioral measures were

established, further analyses were used to determine the nature of these

effects.

Win-Stay/Lose-Shift

Lose-shift and win-stay rates were entered as dependent variables in

univariate ANOVA, with genotype for each polymorphism, learning criterion

attainment (supplement) and gender as fixed effects, including all pairwise in-

teractions. Age and education were included as covariates of no-interest. For

significant effects (p < 0.05) post hoc pairwise t tests of the different genotypes

were conducted to establish the nature of the genotype effects. Again, for sig-

nificant effects, we then assessed the specificity with respect to the phase of

the experiment (acquisition versus reversal) and the feedback validity, in two

mixed repeated-measures ANOVAs with the same factors (DAT1, SERT,

learning criterion attainment). For feedback validity, trials were divided into

valid trials (win on a correct response, or loss on an incorrect response) and

invalid trials. For task phase, trials were divided into acquisition and reversal

phases of the task. Due to the small total number of trials it was not possible

to perform this analysis in a single 2 3 2 factorial analysis.

Perseveration

The effect of genotype on the perseverative error rate was assessed using a

hierarchical regression analysis with three sets of regressors: (1) regressors

of no interest: sex, age, and education; (2) main effects: DAT1 and SERT

genotype and acquisition score; and (3) interactions: DAT1 3 acquisition

score, SERT 3 acquisition score, and DAT1 3 SERT. The same analysis

was repeated for chance errors to establish the selectivity of the effect.

We confirmed any gene-dose effects using a robust regression on the persev-

erative error rates versus acquisition scores for each genotype (Cauchy

weighting, implemented in MATLAB 2011A). To ascertain that any observed

effects on perseveration could not be explained by differences in acquisition,

we assessed genotype effects on two basic measures of learning: (1) propor-

tion of subjects passing a strict learning criterion of eight consecutive correct

responses, using a c2 test, and (2) acquisition score, using an ANOVA.

Model-Based Analysis

Experience-Weighted Attraction Model

To understand the effects ofDAT1 on perseveration in the context of reinforce-

ment learning, we used an augmented version of a standard Rescorla-Wagner

model of learning. The key feature of this model is learning that is weighted by

an experience weight. In this model, perseveration on reversal could occur

because of an increasing reluctance to update the value of stimuli/choices

every time they are chosen. Simplified to remove features unrelated to the
uron 80, 1090–1100, November 20, 2013 ª2013 Elsevier Inc. 1097
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present study, the experience-weighted attraction (EWA) model of Camerer

and Ho (1999) is described by the following equations:

nc;t = nc;t�1 3 r+ 1; (Equation 1)

and

vc;t = ðvc;t�1 343 nc;t�1 + lt�1Þ
�
nc;t: (Equation 2)

Here, ns,t is the ‘‘experience weight’’ of stimulus s (blue or yellow) on trial t,

which is updated on every trial, using the experience decay factor r. vc,t is

the value of choice c on trial t, lt ˛{0, 1} for the outcome received in response

to that choice and 4 is the decay factor for the previous payoffs, equivalent to

the learning rate in theRescorla-Wagnermodel. In particular, note that for r=0,

nc,t is everywhere 1, and themodel reduces to Rescorla-Wagner. For r > 0, the

experience weights promote more sluggish updating with time. Note that a

rearrangement of the parameters is required to see the equivalence between

these equations and Rescorla-Wagner. The Rescorla-Wagner learning rate,

usually denoted a, is here equivalent to (1 – 4). Moreover, the softmax inverse

temperature b, below, is equivalent to the product ba in Rescorla-Wagner.

This is because the values vc,t learned here are scaled by a constant factor

of 1/a relative to those learned by their Rescorla-Wagner equivalents. This

rescaling makes the model more numerically stable at small a.

RP Model

The hypothesis reflected by thismodel is that perseverative behavior is caused

by reduced learning from punishment, where punishment to the previously re-

warded stimulus has little effect, resulting in a failure to devalue this stimulus.

This model is described by the following equations:

vc;t = vc;t�1 +apun 3 ðlt�1 � vc;t�1Þ+arew 3 ðlt�1 � vc;t�1Þ
(Equation 3)

and

v:c;t = v:c;t�1; (Equation 4)

where apun is the punishment learning rate (0 on reward trials), and arew is the

learning rate for reward (0 on punishment trials). V:c,t is the value of the

unchosen option. Note that only the chosen stimulus is updated.

Action Selection

For bothmodels, to select an action based on the computed values, we used a

softmax choice function to compute the probability of each choice. For a given

set of parameters, this equation allows us to compute the probability of the

next choice being ‘‘i’’ given the previous choices:

pðct + 1 = iÞ= ebQðc= i;t + 1ÞP
je

bQðc= j;t + 1Þ: (Equation 5)

Here, b is the inverse temperature parameter.

Model Fitting

For both models, we fit all parameters separately to the choices of each indi-

vidual ([RP: apun, arew; b; EWA:f,r, b]). To facilitate stable estimation across so

large a group of subjects, we used weakly informative priors (Table 1) to regu-

larize the estimated priors toward realistic ones. Thus we use maximum a pos-

teriori (MAP; rather than maximum likelihood) estimation (Daw, 2011). In

particular, we optimized model parameters by minimizing the negative log

posterior of the observed choice sequence, given the previously observed out-

comes, with respect to different settings of the model parameters.

Model Comparison

To investigate which model best described the data, we computed the

Bayesian evidence Em or probability of the model given the data for each

model, using the Laplace approximation (Kass and Raftery, 1995):

Emzlog p
�bqm

�
+ log p

�
c1:T

��bqm

�
+
1

2
Gm log 2p� 1

2
logjHmj:

(Equation 6)

This quantity, like the Bayesian Information Criterion (Schwarz, 1978), which

can be derived from it via a further approximation) scores each model accord-
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ing to its fit to the data, penalized for overfitting due to optimizing the models’

parameters. Here, bqm are the best fittingMAP parameters, pðbqmÞ is the value of
the prior on the MAP parameters, pðc1:T j:bqmÞ is the likelihood of the series of

observed choices on trials 1-T, Gm is the number of parameters in the model

m, and jHmj is the determinant of the Hessian matrix of the second derivatives

of the negative log posterior with respect to the parameters, evaluated at the

MAP estimate.

This Bayesian evidence can then be used to compare models of different

complexity by correctly penalizing models for their differing (effective) number

of free parameters. Having computed this score separately for each subject

and model, to compare the fits at the population level, we used the random-

effects Bayesian model selection procedure (Stephan et al., 2009), in which

model identity is taken as a random effect—i.e., each subject might instantiate

a different model—and the relative proportions of each model across the

population are estimated. From these, we derive the exceedance probability

XPm, i.e., the posterior probability, given the data, that a particular model m

is the most common model in the group.

Significance Tests on Estimated Model Parameters

To assess evidence for dose-dependent effects of theDAT1 polymorphism on

any of the model parameters of the best-fitting model, we used Jonckheere-

Terpstra for ordered alternatives, a nonparametric test due to non-Gaussianity

of the parameters. Significance is reported at a very strict Bonferroni-

corrected significance level of 0.0083 (2 genes3 3 parameters). For complete-

ness, we also tested whether fitted parameter values in the losing model

differed with DAT1 genotype.

Model Simulations

To assess whether the model could replicate the behavioral findings, we

generated trial-by-trial choices using the fitted parameters of the best fitting

model. We then analyzed these choices in the same way as the original

data, again using robust regression analyses.
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