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Abstract

■ pFC is generally regarded as a region critical for abstract rea-
soning and high-level cognitive behaviors. As such, it has become
the focus of intense research involving a wide variety of sub-
disciplines of neuroscience and employing a diverse range of
methods. However, even as the amount of data on pFC has in-
creased exponentially, it appears that progress toward under-
standing the general function of the region across a broad array
of contexts has not kept pace. Effects observed in pFC are legion,
and their interpretations are generally informed by a particular per-

spective or methodology with little regard with how those effects
may apply more broadly. Consequently, the number of specific
roles and functions that have been identified makes the region a
very crowded place indeed and one that appears unlikely to be ex-
plained by a single general principle. In this theoretical article, we
describe how the function of large portions of pFC can be accom-
modated by a single explanatory framework based on the compu-
tation and manipulation of error signals and how this framework
may be extended to account for additional parts of pFC. ■

INTRODUCTION

In his studies of color phenomena (Newton, 1730), Isaac
Newton investigated the composition of white light.
Before Newton’s work, color was generally believed to
derive from combinations of light and dark. In his exper-
iments, he demonstrated that white light, rather than in-
dicating the absence of color, is in fact composed of all
colors. In a famous experiment, white light was refracted
through a prism to produce the color spectrum, after
which the entire spectrum was refracted through a sec-
ond prism, resulting in a white light produced by reinte-
gration of the color spectrum. This experiment provides
a concise and clear example of the processes of analysis
and synthesis (Ritchey, 1991). One prism decomposes
white light into a spectrum (analysis), whereas the sec-
ond prism reconstitutes the color bands into white light
(synthesis). More generally, the process of analysis at-
tempts to understand a phenomenon through decompo-
sition into its constituent parts—literally breaking it up
into simpler, more tractable entities. In turn, synthesis
attempts to take individual components and combine
them into a unified whole (Figure 1).

The metaphorical prisms used by neuroscientists for
analysis are the methods by which observations regard-
ing a particular brain region are recorded (Grinvald &
Hildesheim, 2004). Such tools decompose the world into
a wide spectrum of data. For example, microelectrode
arrays produce data with high temporal resolution re-
corded from a limited number of neurons. EEG and elec-

trocorticography yield data with similarly high temporal
resolution but reflecting the activity of ensembles of neu-
rons over broad neural regions. Data from fMRI, con-
versely, have a relatively coarse temporal resolution but
can provide much greater spatial detail over a larger area
than other methods. The manner in which data are re-
corded can have profound implications for its interpreta-
tions; in extreme cases, data from the same region,
recorded at different temporal and spatial resolutions,
can yield interpretations that are almost diametrically
opposed (Ford, Gati, Menon, & Everling, 2009).
Although it is generally assumed that the data obtained

by these diverse methods reflect some aspect of the
underlying neural mechanisms, the meaning ascribed to
them is informed by a second, metaphorical prism, the
process of synthesis: the particular theory that is brought
to bear on interpreting brain function. For a particular
region of the brain, as for example, the ACC, a social neuro-
scientist may find that it is primarily involved in processing
social cues (Rotge et al., 2015), a neuroeconomist may
discover deep connections with quantities important for
decision-making such as value and uncertainty (Rangel,
Camerer, & Montague, 2008), and all the while, an affec-
tive neuroscientist might insist that the same region is a
vital hub of emotional information such as happiness,
pain, regret, and so on (Lieberman & Eisenberger,
2015). This is not to say that any of these interpretations
are necessarily wrong; however, the fractionation of inter-
pretation induced by specialized subfields may result in a
disjointed and incomplete understanding of the neural
mechanisms underlying human behavior. At worst, this
trend might produce an overly complex “integrative”1Ghent University, 2Radboud University
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account that attempts to explain different functions as the
product of multiple, spatially overlapping modules sub-
serving specific and dissociable roles (Alexander & Brown,
2015b).
If the range of methods and perspectives deployed in

recording and interpreting brain activity reflects the pro-
cess of decomposing a signal into more easily under-
stood constituents—analysis—then, what are the tools
by which the constituent elements are reintegrated?
Generally, this is the work of the theorist who proposes
models and frameworks by which sets of data might be
understood as emerging from some common underlying
mechanism. Models can be specified in a variety of fash-
ions, from simple graphical or written descriptions ex-
plaining how a system may function to more formal
computational or mathematical descriptions. Synthesis
through modeling tends to be a more catholic pursuit
than analysis—to be worthwhile, a model should explain
a range of analytic results rather than only one. However,
even with this broader scope, synthesis can still be con-
strained by the perspective of the single theorist. A neu-
roscientist who is interested in intracellular signaling
cascades will not pursue a theory of behavior, whereas
a psychologist will generally not be interested in protein
phosphorylation. Likewise, a cognitive neuroscientist
may be able to explain the role of a region across a variety
of tasks, such as ACC, but might be at a loss as to why the
same region also responds to pain (Jahn, Nee, Alexander,
& Brown, 2016).
Recent years have seen an increased emphasis on the

synthetic process in neuroscience, frequently in the
search for unifying principles underlying brain function,
by which the diversity of data might be reintegrated.
Proposed unifying frameworks include predictive coding,
free energy, and the Bayesian brain hypothesis. Although
the success of reinforcement learning and deep learning
architectures at approximating human level performance
at a variety of tasks provides existence proofs that rela-
tively simple mechanisms can be used to understand
human cognition, it remains an open question as to
whether the variety of effects observed in brain and

behavior can be reduced to a simple underlying prin-
ciple. Indeed, the range of effects observed across differ-
ent neuroscientific methodologies seems to provide
evidence to the contrary.

Nevertheless, to the extent that the goal of neuro-
science is to understand the function of the brain, it is
insufficient to develop comprehensive models of highly
circumscribed data. However, the sheer proliferation of
data, in type and in quantity, tends to resist easy integra-
tion, sometimes resulting in the attempt of imposing
some degree of order on an otherwise chaotic landscape
through sufficiently sophisticated analyses and machine
learning methods (although it remains unclear how effec-
tive these approaches are at recovering function; Jonas &
Kording, 2017). In attempting to uncover the principles
underlying brain function, then, it is necessary to nego-
tiate between competing demands: The range of data
incorporated should be sufficiently broad to specify a
general underlying mechanism, yet not so broad as to
render integration unlikely.

An Integrative Account of Medial pFC

One region that typifies this tradeoff is medial pFC
(mPFC), especially ACC. mPFC/ACC activity is routinely
observed across a range of experimental paradigms and
is frequently associated with processing behavioral error
(Gehring, Goss, Coles, Meyer, & Donchin, 1993). However,
a host of other interpretations have been ascribed to the
region, often deriving from the particular subdiscipline
from which a study hails. From the affective neuroscience
literature, the region has been assigned roles in process-
ing somatic pain, joy, regret, perseverance, and other
functions primarily associated with emotionally relevant
information (Lieberman & Eisenberger, 2015; Parvizi,
Rangarajan, Shirer, Desai, &Greicius, 2013; Chandrasekhar,
Capra,Moore, Noussair, &Berns, 2008; Coricelli et al., 2005).
In the domain of social neuroscience, ACC has been ob-
served to be involved in processing social exclusion, mon-
itoring the outcomes of another’s choices, or learning from
observing others (Hill, Boorman, & Fried, 2016; Rotge

Figure 1. Figure from Opticks (Newton, 1730) depicting the apparatus used to decompose and reintegrate white light.
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et al., 2015; Apps, Balsters, & Ramnani, 2012). Meanwhile,
in the cognitive domain, ACC has been implicated in pro-
cessing behavioral conflict, predicting the likelihood of
an error, determining the value of exerting effort, or select-
ing optimal control signals (Holroyd & McClure, 2015;
Verguts, Vassena, & Silvetti, 2015; Holroyd & Yeung, 2012;
Brown & Braver, 2005; Botvinick, Braver, Barch, Carter, &
Cohen, 2001).

Given the diverse array of effects observed in the region,
it is an open question as to whether a single explanatory
framework could be brought to bear to interpret signals
generated by ACC. By and large, theorizing regarding
ACC function (and pFC function in general) has tended
to avoid overarching accounts and instead focused on
the role of ACC under particular contexts (Holroyd &
McClure, 2015; Shenhav, Straccia, Cohen, & Botvinick,
2014; Shenhav, Botvinick, & Cohen, 2013; Holroyd & Yeung,
2012; Kolling, Behrens, Mars, & Rushworth, 2012; Grinband
et al., 2011; Silvetti, Seurinck, &Verguts, 2011; Brown & Braver,
2005; Yeung, Cohen, & Botvinick, 2004; Holroyd & Coles,
2002; Botvinick et al., 2001). Computational and mathe-
matical models of the region have typically concerned
themselves with the function of ACC within constrained
empirical perspectives such as cognitive control or value-
based decision-making. Indeed, the impetus behind the
development of the predicted response–outcome (PRO)
model (Alexander & Brown, 2010, 2011) was to provide
an account of the function of ACC under relatively simple
cognitive control tasks. The PRO model states that ACC
learns to predict the likely outcomes of actions and signals
deviations between observed and expected outcomes.
Although the PRO model successfully captured effects re-
lated primarily to cognitive control, the formulation of
the model as signaling surprising deviations from ex-
pectations suggested that it could be applied in a more
general manner. In follow-up modeling work (Brown &
Alexander, 2017; Alexander, Fukunaga, Finn, & Brown,
2015; Alexander & Brown, 2014) based on the PRO model,

as well as tests of model predictions performed by other
researchers (Jahn, Nee, Alexander, & Brown, 2014; Chang,
Gariépy, & Platt, 2013; Talmi, Atkinson, & El-Deredy, 2013;
Ferdinand, Mecklinger, Kray, & Gehring, 2012; Bryden,
Johnson, Tobia, Kashtelyan, & Roesch, 2011), the twin func-
tions of the PRO model—prediction and error signaling—
have been applied to a broad range of perspectives, rang-
ing from decision-making; social, affective, and clinical
neuroscience; and perception and attention. A non-
comprehensive list of effects captured by the PRO model
is included elsewhere in this issue (Brown & Alexander,
2017). Given the breadth of effects encompassed by
the PRO model, the range of perspectives to which the
PRO account of ACC can be applied, and its ability to
address observations from the level of single units to
behavior, the PROmodel remains themost comprehensive
account of ACC function to date.

Building Out the Brain

Beyond merely addressing the function of ACC, however,
the formulation of the PRO model carries implications re-
garding the function of regions of the brain with which
ACC interacts. The PRO model generates two main sig-
nals, one related to predicting future events and another
related to signaling surprising deviations. If, as the PRO
model suggests, these two signals constitute the main
outputs of ACC, regions connected to ACC should inter-
act with at least one, and possibly both, of those signals
(Figure 2A). Furthermore, the error and prediction sig-
nals generated by the PRO model are vector valued, car-
rying information regarding all possible outcomes that
may be observed after a stimulus and reporting the
amount by which an observed event deviates from all
predictions.
Concurrently, the possible function of interactive brain

regions is further implied by the class of tasks that the
PRO model is unable to address. As noted above, the

Figure 2. (A) According to the
PRO model, ACC generates two
principal signals, prediction
and prediction error. If this
account is correct, regions in
pFC with which ACC interacts
must do so through one or both
of these signals, constraining
the range of possible functions
those regions may have.
(B) The HER model specifies
how dlPFC may interact with
ACC by learning representations
of the error signal generated
by ACC and deploying active
error representations to
modulate predictive activity. (1) Task stimuli lead to predictions regarding likely outcomes. (2) Deviations between predicted and observed outcomes
produce error signals, which are used to train distributed error representations in dlPFC. (4) Subsequent encounters with task stimuli leading to
prediction errors reactivate error representations in dlPFC, (5) which are then used to modulate predictive activity in ACC.

1676 Journal of Cognitive Neuroscience Volume 29, Number 10
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PRO model was developed with the intent of capturing
effects related to cognitive control. In typical cognitive
control experiments, participants observe a stimulus in-
dicating that a response is required, and after the gen-
eration of a response, the participant receives feedback
regarding their performance, after which the next trial be-
gins. Beyond a limited range of intertrial effects (Alexander
& Brown, 2014), however, the PRO model is unable to ad-
dress observations regarding ACC involvement in more
sophisticated working memory tasks that involve the
maintenance of information over protracted delays, often
in the face of distracting, irrelevant information and
potentially involving complex interrelationships among
stimulus features that must be learned to inform correct
behavior (Nee & Brown, 2013). An example of such a
task is the AX Continuous Performance Task (CPT; Rosvold,
Mirsky, Sarason, Bransome, & Beck, 1956), in which par-
ticipants observe a sequence of stimuli (A, B, X, and Y)
and are required to make a target response when an X
appears, but only if the stimulus immediately preceding it
was an A. To successfully perform this task, information
related to the stimulus preceding an X must be maintained
to correctly determine the response to the X.
Considering these two points, then, that (1) regions

with which ACC interacts either receive or alter process-
ing of prediction and/or error signals generated by ACC
and (2) these regions are important for learning and
performing complex cognitive tasks that require repre-
senting information regarding the relationships of task
components, along with the assumption that prediction
and error signaling constitute a general role for ACC
across a range of experimental paradigms, we can begin
to develop a clearer idea of the functions of additional
regions of pFC. In this regard, dorsolateral pFC (dlPFC)
is a likely candidate: dlPFC is densely and reciprocally
interconnected with ACC (Medalla & Barbas, 2009, 2010;
Barbas & Pandya, 1989) and is generally implicated in rep-
resenting rules and complex task structure as well as in
maintaining information over protracted delays, that is,
working memory (Badre, Kayser, & D’Esposito, 2010;
Chadderdon & Sporns, 2006; Koechlin, Ody, & Kouneiher,
2003). dlPFC is believed to be organized along a rostro-
caudal abstraction gradient, with caudal regions repre-
senting concrete rules and rostral areas representing
abstract context information, and it is frequently coacti-
vated, with ACC, in tasks that involve complex inter-
relationships and learning models of the world (Nee &
Brown, 2013; Badre & Frank, 2012; Gläscher, Daw, Dayan,
& O’Doherty, 2010; Badre & D’Esposito, 2007, 2009).
How might dlPFC interact with prediction and error

signals generated by ACC? In Alexander and Brown
(2011), we noted that the vector-valued error signal used
by the PRO model is appropriate for model-based re-
inforcement learning (Barto, Bradtke, & Singh, 1995;
Sutton, 1990) as distinct from model-free reinforcement
learning approaches that employ a scalar value signal to
drive learning (Sutton & Barto, 1990). Previous work

(Gläscher et al., 2010) has observed effects in dlPFC con-
sistent with such a learning signal, suggesting that error
signals generated by ACC may be used in dlPFC to learn
representations of a task. Furthermore, working memory
is important for informing and contextualizing behavioral
responses; to respond correctly to an X in the AX CPT,
information carried by the immediately preceding stimu-
lus is required to modify predictions regarding the likely
outcomes of the various responses one could make.
Together, these observations led to the development of the
hierarchical error representation (HER) model (Alexander
& Brown, 2015a, 2016). The HER model proposes that
error signals generated in ACC/mPFC are used to train
representations in dlPFC, which are associated with task-
relevant stimuli that reliably precede a prediction error
(Figure 2B). When these representations are elicited by
future presentations of the task stimuli with which they
are associated, they are used to modulate prediction-
related activity in ACC/mPFC. In typical reinforcement
learning applications, the error signal specifies the direc-
tion and magnitude by which associations between a stim-
ulus and its associated outcomes should be modified. In
contrast, representations learned by the dlPFC in the
HER model are predictions of prediction errors reported
by ACC/mPFC; error signals constitute a kind of “proxy”
outcome upon which representations in dlPFC converge
during the course of learning. By using error signals them-
selves as outcomes that are the target of predictive pro-
cesses, additional error signals reflecting the discrepancy
between a predicted error and an actual error can be calcu-
lated, and these higher-order error signals may themselves
be subject to further prediction and error calculations, and
so on. Although this process of calculating increasingly ab-
stract prediction errors could, in principle, continue arbi-
trarily, it is computationally limited by the capacity of
computer systems on which the HER model is simu-
lated, and biologically, it appears that the human brain
is organized into three to five hierarchical processing
levels in pFC, from premotor cortex at the base layer
to rostral dlPFC (Reynolds, O’Reilly, Cohen, & Braver,
2012; Badre, 2008; Koechlin et al., 2003).

The purpose of learning to predict prediction errors
themselves, as opposed to some other quantity, is to re-
fine predictions regarding the likely outcomes of actions;
being able to predict the kinds of prediction errors that
are possible within a given context provides information
sufficient to refine predictions of the likely outcomes
given a current stimulus. The use of error signals in this
fashion—as being the target of predictive processes in
addition to governing prediction learning—is appealing
for two reasons. First, and most pragmatically, learning
representations of errors works: The HER model is able
to learn to perform structured tasks from trial-and-error
learning in a manner consistent with human behavior.
Second, from an aesthetic point of view, the use of a
common representation scheme used among regions in
pFC is parsimonious and does not require intermediate

Alexander et al. 1677

D
o
w
n
l
o
a
d
e
d
 
f
r
o
m
 
h
t
t
p
:
/
/
m
i
t
p
r
c
.
s
i
l
v
e
r
c
h
a
i
r
.
c
o
m
/
j
o
c
n
/
a
r
t
i
c
l
e
-
p
d
f
/
2
9
/
1
0
/
1
6
7
4
/
1
7
8
6
5
7
8
/
j
o
c
n
_
a
_
0
1
1
3
8
.
p
d
f
 
b
y
 
M
I
T
 
L
i
b
r
a
r
i
e
s
 
u
s
e
r
 
o
n
 
1
7
 
M
a
y
 
2
0
2
1

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/jocn_a_01138 by RADBOUD UNIVERSITEIT NIJMEGEN user on 29 August 2022



transformations of information. The HER model is thus
composed of a relatively simple computational motif that
is hierarchically iterated. At each level, the model attempts
to learn to predict the association between task stimuli
and outcome signals arriving from lower hierarchical levels
(or, at the base level, from the external environment),
passing the results of error calculations upward along the
hierarchy, while prediction information is passed down-
ward to modulate the processing of lower hierarchical
levels. However, although the calculation and maintenance
of quantities related to error appear to be a useful scheme
for interpreting the function of pFC, this aspect of the
model remains speculative and in need of testing.

Although the computational motif on which it is based
is relatively simple (in fact, it is functionally identical to
the PRO model), the HER model is capable of learn-
ing complex cognitive tasks in a manner consistent with
human behavior and evidence from neuroimaging studies
(Alexander & Brown, 2015a). Rather than being limited to
explaining results from a single task, the architecture of
the HER model constitutes a general learning algorithm
that can solve a range of tasks reported in the literature
(Alexander & Brown, 2016), ranging from relatively simple
examples such as the AX CPT or delayed-match-to-sample
tasks to highly involved tasks using multiple stimulus cat-
egories with complex interrelationships (Koechlin et al.,
2003) in a way that captures the function of ACC/mPFC
and dlPFC as well as how the two regions interact during
behavior (Kim, Johnson, Cilles, & Gold, 2011). The HER
model additionally captures patterns of activity in single
neurons observed in lateral pFC and mPFC during tasks
involving maintenance of information and sequential
decision-making (Procyk, Tanaka, & Joseph, 2000; Miller,
Erickson, & Desimone, 1996). In brief, the HER model
addresses itself to a broad range of tasks to account for
data from multiple levels of description simultaneously.

Toward an Integrative Model of pFC

Together, the PRO and HER models provide one of the
most comprehensive accounts of effects observed in pFC
(cf. Brown & Alexander, 2017; Table 1). These effects
range from single units in lateral pFC and mPFC, the activ-
ity of ensembles of neurons indexed by EEG and fMRI, the
nature of representations deployed by pFC in the context
of high-level cognitive tasks, and how the acquisition of
these representations during learning contributes to
behavioral markers of adaptive behavior. The ability of
the models to capture these effects rests on the recon-
ceptualization of activity in pFC as being fundamentally
related to calculating, maintaining, and manipulating
quantities related to prediction error: In the HER frame-
work, mPFC calculates deviations between expected and
observed outcomes, whereas dlPFC learns representa-
tions of the expected error reported by mPFC and asso-
ciated with task-relevant stimuli.

The integration suggested by the HER model then is
twofold. First, the HER model bridges multiple levels of
description, concurrently providing an account of the
function of single neurons in pFC, the role those units
play in neural ensembles, and ultimately, how their dis-
tributed activity conspires to produce observed patterns
of behavior. Second, the architecture of the HER model
suggests a relationship with theoretical frameworks that
have been proposed as potentially unifying models of
neocortex. Recent years have seen a renewed interest
in the search for such a unifying framework that may

Table 1. Effects Simulated by the HER Model So Far

Region

fMRI

Badre et al., 2010 LPFC

Kim et al., 2011 LPFC/mPFC

Koechlin et al., 2003 LPFC

Nee & Brown, 2012 LPFC

Nee & Brown, 2013 LPFC

Nee, Jahn, & Brown, 2013 LPFC

Nee & D’Esposito, 2016 LPFC

Reverberi, Görgen, & Haynes, 2011 LPFC

Reynolds et al., 2012 LPFC

Lesion

Gehring & Knight, 2000 mPFC

Tsuchida & Fellows, 2008 LPFC/mPFC

Single unit

Hayden, Pearson, & Platt, 2011 mPFC

Miller et al., 1996 LPFC

Procyk et al., 2000 mPFC

Shidara & Richmond, 2002 mPFC

Stoll et al., 2016 LPFC/mPFC

Behavioral

Badre et al., 2010 NA

Krueger, 2011 NA

Krueger & Dayan, 2009 NA

Markant & Gureckis, 2012 NA

Stoll et al., 2016 NA

LPFC = lateral prefrontal cortex; NA = not applicable.

1678 Journal of Cognitive Neuroscience Volume 29, Number 10
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be of use in interpreting the function and organization of
the brain. Approaches such as hierarchical Bayesian
inference, free energy, and predictive coding (Clark, 2013;
Friston, 2010; Lee & Mumford, 2003; Rao & Ballard, 1999)
have garnered significant interest in this respect and have
achieved success in explaining effects observed in sen-
sory and motor cortices. Generally, these approaches
suggest a hierarchical organization of the brain in which
information in the form of prediction errors is passed from
inferior hierarchical levels to superior levels, whereas infor-
mation required to “explain away” prediction errors gen-
erated at a lower level are passed downward from
superior hierarchical levels. The HER model conforms to
this overall framework, with prediction errors traveling
through the hierarchy along bottom–up routes, while rep-
resentations of prediction errors are passed in a top–down
fashion to refine predictions of lower levels. Within each
level of the hierarchy, mPFC and dlPFC serve complemen-
tary roles along the bottom–up and top–down processing
pathways. In the bottom–up pathway, mPFC calculates
error signals used to train error representations in dlPFC
at superior hierarchical layers. In the top–down pathway,
contextually relevant components of active error repre-
sentations in dlPFC are selected by mPFC to modulate
ongoing prediction-related activity at lower hierarchical
layers (Alexander & Brown, 2015a). At the base layer of
the hierarchy, the HER model interprets mPFC activity as
being involved in predicting response–outcome conjunc-
tions (as in the PRO model) and signaling discrepancies;
top–down information thus serves to contextualize or
“explain away” errors that would otherwise be reported
without top–down modulation. Thus, the HER model pro-
vides a demonstration that predictive coding and related
approaches may be extended into pFC.
By recasting the function of large portions of pFC as

relating to prediction errors, either through the explicit
calculation of error or through maintaining predictions
of potential future prediction errors, the HER model sug-
gests that error calculation and representation may serve
as a common code underlying neural activity and com-
munication. This possibility stands in contrast to recent
proposals (Shenhav et al., 2013; Levy & Glimcher, 2012)
that quantities related to the prediction and calculation
of value might constitute the common neural currency
under which the function of brain regions should be inter-
preted. Although a large literature in neuroeconomics
and judgment and decision-making has implicated
aspects of the frontal lobes in value computations, espe-
cially, for example, ventromedial and orbitofrontal pFC
(Grabenhorst & Rolls, 2011; Gläscher, Hampton, &
O’Doherty, 2009; Rangel et al., 2008; Padoa-Schioppa
& Assad, 2006; Kringelbach, 2005; Gottfried, O’Doherty,
& Dolan, 2003), it is not automatic that value represen-
tation needs to be the only, or even primary, role of those
regions (Stalnaker, Cooch, & Schoenbaum, 2015; Gläscher
et al., 2010; Hampton, Bossaerts, & O’Doherty, 2006). One
possibility is that effects that appear to relate to neuro-

economic quantities such as value may have an alternate
interpretation under the framework of error and error
representation. Alternately, it is possible that different
processing streams in pFC utilize complementary but dis-
tinct forms of representation to support diverse cognitive
behaviors. An open question therefore is whether pre-
dictive coding in general, and the HER model in particu-
lar, might be expanded to account for the function of
additional regions of pFC without reference to explicit
value signaling.

In this regard, one possible avenue by which the HER
model might be extended relates to the status of internal
representations used by the model. As detailed above,
the PRO model was aimed initially at explaining effects
observed within mPFC and with little regard as to how
the signals postulated by the model might be deployed
by regions with which mPFC interacts. Additional mod-
eling work, building on the PRO model, specifies how
prediction and error signals in the model may be used
in supporting proactive and reactive control (Brown
& Alexander, 2017) or in the acquisition and perfor-
mance of cognitive tasks (Alexander & Brown, 2015a).
In a similar fashion, the origin of internal representations
used by the PRO and HER models as the bases for learn-
ing is left underspecified; the appearance of an external
stimulus results in the activation of an internal repre-
sentation corresponding to that stimulus. This mapping
of external stimuli to internal representations in a one-
to-one fashion is likely overly simplistic—besides the
considerable processing needed to transform patterns
of light hitting the retina into unitary internal represen-
tations (e.g., letters or numbers), additional processes
are involved in governing whether the presence of an
external stimulus is registered (e.g., attention) as well
as contextual influences on how that stimulus, once reg-
istered, informs ongoing behavior. A significant chal-
lenge to be addressed then is whether unifying schemes
such as predictive coding can be leveraged to explain
the representation and contextualization of task stimuli
in pFC.

It is possible that additional regions with which mPFC
interacts may be involved in regulating access of internal
stimulus representations to regions of pFC involved with
outcome prediction and error calculations. One region
that may potentially serve this role is the anterior insula
cortex (AIC). AIC is reciprocally connected with mPFC/
ACC (Augustine, 1996), and coactivation of the two re-
gions is routinely observed, especially during the registra-
tion and processing of behavioral error (Ullsperger,
Harsay, Wessel, & Ridderinkhof, 2010). It has been sug-
gested, considering the dense innervation of AIC from
amygdala (Augustine, 1996), that AIC is important for pro-
cessing emotionally relevant information (Jones, Ward, &
Critchley, 2010; Wiech et al., 2010; Singer, Critchley, &
Preuschoff, 2009). However, considering that ACC has
also been extensively implicated in processing affective
information (Lieberman & Eisenberger, 2015; Rotge
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et al., 2015; Chandrasekhar et al., 2008; Bush, Luu, &
Posner, 2000), it seems unlikely that the two regions are
dissociated by their role in emotional processing. An
alternative possibility is that AIC may be involved in the
selection of information for further processing by ACC.
AIC receives rich interoceptive signals related to bodily
states (Barrett & Simmons, 2015; Critchley, Wiens, Rotshtein,
Öhman, & Dolan, 2004) as well as information potentially
related to the significance of sensory input (Han & Marois,
2014; Menon & Uddin, 2010; Nelson et al., 2010; Eckert
et al., 2009; Corbetta & Shulman, 2002). Models of asso-
ciative learning (Alexander, 2007; Kruschke, 2001; Pearce
& Hall, 1980; Mackintosh, 1975) have suggested that error
signals generated during learning might not only support
the alteration of associations between a stimulus and its
subsequent outcomes but also modulate the associability
(or salience) of a stimulus. Error signals generated by AIC
might therefore provide a means by which incoming in-
formation, interoceptive or exteroceptive, is triaged for
further processing, whereas error signals in mPFC influ-
ence the associations learned regarding selected informa-
tion. In support of this possibility, AIC is known to project
to the nucleus basalis, the primary source of cholinergic
input to cortex, although evidence for innervation of the
nucleus basalis by cingulate is mixed (Russchen, Amaral, &
Price, 1985; Mesulam & Mufson, 1984); acetycholine has
been implicated as an important neuromodulator for esti-
mating risk and selecting internally represented informa-
tion (Smith, Saaj, & Allouis, 2012; Krichmar, 2008; Yu &
Dayan, 2005).

The integration suggested by the HER model, although
of potential interest, remains speculative for a number of
reasons. First, although the HER model is able learn a
number of tasks that have been deployed in the study
of high-level cognitive behaviors (Alexander & Brown,
2016), these tasks represent only one “operating mode”
of the brain. Specifically, in the kinds of tasks the HER
model was developed to learn, participants are required
to integrate a history of observations to determine the
correct behavior given a currently observed stimulus. This
type of task is exemplified by the 1-2 AX CPT (O’Reilly &
Frank, 2006) in which the sequence of stimuli observed by
a participant is externally controlled; when a potential
target cue is displayed, participants can only refer to past
observations to arrive at a decision as to whether to make
a target or nontarget response. Contrast this with a situa-
tion in which participants may be asked to navigate from
one point in a maze to another; in this case, participants
must themselves determine the sequence of observations
required to correctly solve the maze. Although the pres-
ent version of the HER model is unable to address this
kind of behavior, it is possible that the general hierar-
chical organization of pFC as instantiated in the model,
as well as its interpretation of activity in pFC as relating
to error representation and manipulation, may be suitable
for this form of goal-oriented decision-making. Under this
mode of operation, goals might be interpreted as dis-

crepancies (or errors) between a desired and current state
and behaviors selected on the basis of how efficiently this
discrepancy is reduced.
A second potential limitation of the model in its cur-

rent form, also related to the class of tasks the model
was developed to perform, is its inability to account for
behaviors related to the manipulation of internal repre-
sentations. An example of this kind of behavior, pervasive
in the working memory literature, is the n-back task
(Kirchner, 1958), in which participants observe a se-
quence of stimuli and are required to report whether
the current stimulus is a match for the stimulus observed
n steps previously (typically n is a number from 1 to 3).
Above and beyond passively integrating a history of
observations, the n-back task requires participants, upon
presentation of a new stimulus, not only to maintain the
identity of previously observed stimuli but also to update
those representations with information pertaining to
the number of steps in the past they were observed.
For example, if a picture of a dog was observed one step
in the past, the presentation of a new stimulus requires
participants to remember that the dog was now observed
two steps in the past. Related to this kind of task are
other cognitive behaviors, such as mental calculation, in
which the results of simple calculations must be repre-
sented internally and used in further calculation to arrive
at the correct solution. The active maintenance and
manipulation of internal representations implied by tasks
of this sort suggest the existence of a “visuospatial
sketchpad” or “phonological loop” (Baddeley & Hitch,
1974) in which the results of internal representational
manipulations can be stored for later use or reintegrated
during further manipulation. Although the HER model in
its current form does not incorporate a mechanism by
which such manipulations of internal representations
might be carried out, it is possible that future work might
extend the model to include such operations.
More generally, although the HER model is incom-

plete, its reconceptualization of large portions of frontal
cortex as engaging in error calculation and representation
provides a lens through which additional regions might
be viewed. A key challenge for future work is to investi-
gate whether and how processes related to error compu-
tation might constitute a general functional principle of
pFC. In much the same way that the PRO model pro-
vided critical constraints on how regions with which
ACC interacts may function, the HER model may further
inform our understanding of the organization and func-
tion of the rest of pFC. Although the success of the
HER and PRO models in accounting for a wide array of
effects, from single neurons to behavior, suggests that
error-related processes may be a useful framework for
interpreting brain function, it is possible that such a frame-
work may in fact prove insufficient to explain the diversity
of observations throughout pFC. In either eventuality,
whether it serves as the basis for a broader understanding
of pFC, or as a theory to be superseded by more
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comprehensive accounts, the HER model is a step toward
the ultimate goal of understanding the function of pFC.
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