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Influential theories suggest that the human brain navigates its 
environment by building predictive models of the world, which 
in turn fuel cognitive processes such as directed exploration, 

goal-directed decisions and forward planning1–3. While these inter-
nal models can take diverse mathematical forms, their efficiency 
always depends on the use of task-relevant and cost-efficient state 
spaces4–6. Most often, these state spaces are state–action spaces in 
which the actions of the agent actively contribute to the prediction 
of upcoming events. For example, a driver must take into account 
the movement of their hands to predict the future position of their 
car. By contrast, a passenger worried for their safety should ignore 
their own hands and instead focus on the hands of the driver to 
anticipate potential hazards.

Determining whether an environment is controllable or not is 
key to deciding the extent to which one’s actions should influence 
the prediction process since only controllable environments afford 
causal influence over state transitions. Controllable contexts thus 
prompt the use of ‘actor’ models including one’s own actions as pre-
dictors, whereas uncontrollable contexts prompt the use of simpler, 
‘spectator’ models linking past and future states of the environment. 
By gating the causal influence of action selection, controllability 
probably plays a central role in the engagement of elaborate action 
selection mechanisms. Supporting this idea, it is well established 
that prior exposure to controllable contexts promotes proactive and 
goal-directed strategies in a variety of cognitive tasks7,8. Conversely, 
the lack of perceived control over events, especially stressful ones, 
constitutes a well-established correlate and a potential predictor of 
prevalent psychiatric disorders involving an increased influence 
of reactive and habitual behaviours, such as depression, anxiety, 
post-traumatic stress or obsessive–compulsive disorders9–13.

Numerous studies have shown that exposure to uncontrollable 
stressors can induce a state of learned helplessness characterized by 
the generalization of passive reactions to subsequent challenges7,8. 
Evidence indicates that this maladaptive state largely depends on 
functional changes within the medial prefrontal cortex (mPFC) 
and the serotonin system14–18. In humans, a handful of neuroimag-
ing experiments have further suggested that the anterior insula and  

cingulate cortex contribute to the detrimental effects of uncontrol-
lable stressors19,20. Beyond stress induction studies, the sense of 
being in control of one’s own actions and their outcomes is known 
to modulate haemodynamic responses parietal and prefrontal cor-
tices21–23, and the right temporoparietal junction (TPJ) was found 
to track the divergence of action–outcome transitions, a feature of 
controllable environments24.

Yet, little is known about the algorithms by which the brain esti-
mates dynamically the degree to which a task is controllable. A gen-
eral strategy is to estimate controllability by computing the causal 
effect the agent’s own actions have over the environment. Formally, 
a task can thus be deemed controllable when the transfer entropy 
(TE)—a generalization of Granger causality to nonlinear and dis-
crete systems—linking state and action time series is positive25,26. 
By comparing the entropy of observed states given previous states 
and actions [H(S′|S,A)] with the entropy of observed states given 
previous states only [H(S′|S)], this information-theoretic quantity 
isolates the effective causal influence of actions over state transitions 
(Fig. 1a and Supplementary Note 1). In the vocabulary of causal 
mediation analysis27, positive TE values entail the existence of a nat-
ural direct effect linking actions to future states of the environment 
(Supplementary Note 2). Here, we develop a computational model 
that tracks a dynamic approximation of TE and use it to shed light 
on the cognitive and neural mechanisms supporting the ability to 
infer task controllability and adapt behaviour accordingly.

Based on this information-theoretic formalism, we designed an 
explore-and-predict task that allowed us to manipulate controlla-
bility and assess the resulting changes in terms of subjective con-
trollability and prediction accuracy. This new task was first used 
in behavioural (n = 50) and functional magnetic resonance imag-
ing (fMRI) (n = 32) experiments aimed at (1) demonstrating that 
humans infer task controllability by estimating an approximation of 
TE, (2) establishing the dissociation of spectator and actor models 
predicted by the TE hypothesis at the behavioural and neural levels 
and (3) unravelling the neural substrates underlying the represen-
tation of controllability itself and its influences on behaviour. In a 
subsequent stress experiment (n = 54), we exposed participants to 
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either uncontrollable or controllable electric shocks before admin-
istering the explore-and-predict task to (4) provide causal evidence 
supporting a dissociation of the spectator and actor models and 
(5) test whether learned helplessness can be characterized by an 
increased reliance on the former relative to the latter.

Results
Experimental paradigm and computational model. Healthy 
human participants were invited to explore an abstract environ-
ment composed of three states (square, circle and triangle) and 
three actions (yellow, blue and magenta). A hidden transition 
rule always determined upcoming states, dependent on either the 
action of the participants (controllable rules, C) or the previous 
state only (uncontrollable rules, U) (Fig. 1b). The transition rules 
were probabilistic and reversed covertly, so participants needed to 
explore and accumulate evidence to tell which rule was operative. 
From time to time, the participant was asked to predict the most 
likely upcoming state given a state–action pair (for example, ‘blue’ 
action in ‘circle’ state), and its counterfactual (for example, ‘yellow’ 
action in ‘circle’ state). This procedure yielded a direct yet implicit 
assessment of their subjective sense of controllability because 
counterfactual predictions should only differ in controllable con-
texts, where selected actions determine upcoming states (Fig. 1c). 
A novel and distinguishing feature of our task is that controllabil-
ity varied independently of uncertainty (Fig. 1d), a methodologi-
cal improvement over earlier paradigms where the two constructs 

covary systematically13,24,28. Another key difference from previous 
studies is that we did not include any reinforcers: participants were 
merely instructed to explore their environment to perform accu-
rate predictions when asked to. Here, controllability estimation 
can interact with but does not depend on reward and punishment 
processing7,29,30, the only requirement being to maintain a minimal 
level of exploration, or noise in the action selection process (Fig. 1e 
and Supplementary Note 1).

To untangle the mechanisms of controllability estimation in this 
task, we designed a computational architecture for dynamically 
tracking an approximation of TE (see Supplementary Fig. 1a and 
Methods for a detailed description). Paralleling the standard com-
putation of TE, two sets of transition probabilities were monitored, 
one corresponding to an ‘actor’ model (tracking state–action–state 
transition, SAS′) and the other to a ‘spectator’ model (tracking 
state–state transition, SS′, Fig. 1f,i). Following each transition, an 
approximation of TE (termed Ω) was updated in proportion to the 
difference between ‘actor’ and ‘spectator’ transition probabilities 
pSAS′ − pSS′ (Fig. 1f,ii). Intuitively, this difference term can be under-
stood as an instantaneous causality signal, reflecting how likely the 
last state transition towards S′ was due to the influence of action 
A rather than state S. By integrating pSAS′ − pSS′ over time, Ω thus 
reflects the causal influence of actions on recent state transitions 
(Supplementary Fig. 1b).

This causality signal Ω is at the core of the proposed algorithm, 
which arbitrates between the actor and the spectator model when 
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Fig. 1 | theoretical framework and experimental protocol. a, Controllability can be inferred from Te, an information-theoretic measure quantifying the 
extent to which a time series causally influences another one. b, Time course of a novel explore-and-predict task divided in short mini-blocks. each 
mini-block consists of a series of exploratory trials (violet) followed by two counterfactual prediction trials (green) used to assess learning and subjective 
controllability. c, Representation of the two uncontrollable rules (U1, U2) and the two controllable (C1, C2) rules, which alternate covertly to govern the 
evolution of the environment. Note that rule C2 was the only rule allowing state repetition, a feature that was taken into account in our analyses.  
d, Simulations showing the dissociation of controllability, as indexed by Te, and predictability, as indexed by the mutual information (MI) shared between 
successive state–action pairs (random exploration policy). e, Simulations under controllable rule C2 showing that Te requires exploration to be used as a 
proxy for controllability. In the complete absence of exploration, the conditional entropies H(S′|S) and H(S′|S,A) are both null because the agent maintains 
itself indefinitely in a single preferred state (Supplementary Fig. 1c). f, Synthetic overview of the algorithm able to derive an online approximation of Te 
(termed Ω) by comparing on each trial the transition probabilities of an actor (SAS′) and a spectator (SS′) model of the world. By thresholding Ω, the 
algorithm could in turn arbitrate between spectator and actor models when making predictions depending on current controllability estimates (ω). This 
architecture was compared with other controllability estimation schemes and a standard model-based learning model tracking only SAS′ transitions.
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making predictions about upcoming states. Specifically, the relative 
weight of the actor versus spectator model is set by an arbitrator 
(termed ω) whose value can be interpreted as an estimate of con-
trollability. Two parameters influence the mapping between Ω and 
ω: a threshold determining how much causal evidence is required to 
infer controllability and a slope determining how fast controllabil-
ity estimates change around that threshold (Fig. 1f,iii). This SAS′–
SS′–Ω algorithm was contrasted with a conventional model-based 
learning algorithm2,31 and with two models estimating controllabil-
ity based on the uncertainty (as indexed by the conditional entropy 
H(S′|A,S)) or the divergence of SAS′ transition probabilities bound 
to different actions (as indexed by the Jensen–Shannon divergence). 
Importantly, this simpler algorithm could still learn transition prob-
abilities from both uncontrollable and controllable conditions in 
stable environments, but the lack of controllability-dependent arbi-
tration makes it less efficient in volatile environments alternating 
rapidly between controllable and uncontrollable rules.

Controllability drives learning and predictive decisions. 
Participants performed well on the task. In all experiments, the 
average prediction accuracy was substantially above chance  
(Fig. 2a). In the fMRI experiment, for which participants received 
more training, accuracy was also stable across conditions and time 
(Supplementary Table 1). Prediction accuracy dropped and then 
rapidly recovered after covert reversals in transition rules, already 
exceeding chance levels on the first pair of prediction trials after 

reversal (Fig. 2b). Prediction accuracy also correlated positively 
with working memory capacity as indexed by d′ values in a stan-
dard two-back task (Fig. 2c), consistent with the engagement of a 
model-based learning process32.

In line with our prediction that humans solve the task by estimat-
ing Ω, Bayesian model comparisons demonstrated that SAS′–SS′–Ω 
schemes outperformed the conventional model-based learning algo-
rithm (SAS′ alone) in all experiments (Fig. 3a and Supplementary 
Fig. 2a). Simulation analyses confirmed that the model was iden-
tifiable and that most of its parameters could be recovered accu-
rately (Supplementary Fig. 2b–d). As expected, the arbitrator ω 
captured quantitative changes in subjective controllability, indexed 
by the proneness of participants to predict that different actions 
would lead to different states in counterfactual prediction trials 
(Fig. 3b). Critically, the SAS′–SS′–Ω scheme that included an arbi-
tration mechanism accounted better for the dynamics of subjective 
controllability changes around reversals than did the SAS′ model 
alone (Fig. 3c, correct prediction of subjective controllability: 72.1% 
versus 66.5%, N = 50, z(49) = 3.90, d = 0.64, P = 9.7 × 10−5, 95% con-
fidence interval (CI) 0.004–0.028). As compared with other control-
lability estimation schemes (that is, SAS′–SS′–H and SAS′–SS′–JS), 
its arbitrator variable ω also predicted variations in subjective con-
trollability more accurately (Supplementary Fig. 2e,f). The benefits 
of monitoring controllability are further illustrated by the finding 
that the likelihood of using the SAS′–SS′–Ω scheme over the SAS 
scheme increased with accuracy across subjects (Supplementary 
Fig. 2g). Importantly, since only one controllable rule (and none of 
the uncontrollable rules) allowed immediate state repetitions (rule 
C2), state repetition events provided a salient psychological cue 
that contributed to controllability detection. Accordingly, rule C2 
was associated with a higher frequency of subjective controllabil-
ity responses than rule C1 across the three experiments (behaviour: 
N = 50, 82.3 ± 13.3% versus 75.6 ± 14.0%, t(49) = 4.1, P = 1.5 × 10−4, 
d = 0.58, 95% CI 0.03–0.10; fMRI: N = 32, 88.7 ± 14.5% versus 
69.3 ± 15.4%; t(31) = 6.29, P = 5.5 × 10−7, d = 0.55, 95% CI 0.13–
0.26; stress: N = 27, t(53) = 4.03, P = 1.8 × 10−4, d = 0.55, 95% CI 
0.04–0.13). On average, participants also chose more frequently 
the actions that could lead to state repetition whenever rule C2 was 
active, thereby indicating that they leveraged this feature of our 
task to refine controllability inferences in all experiments (behav-
ioural: 53 ± 8%, t(49) = 2.6, P = 0.012, d = 0.37, 95% CI 0.007–0.05; 
fMRI: 51.5 ± 4.6%, t(31) = 1.85, P = 0.07, d = 0.33, 95% CI −0.001 to 
0.03; stress: 53.2 ± 10.3%, t(53) = 2.29, P = 0.025, d = 0.31, 95% CI 
0.004–0.06). Computational models took this factor into account by 
allowing prior knowledge about transition rules—as derived from 
the instruction phase—to constrain the update of actor and specta-
tor models (see Supplementary Information, modelling subsection 
for more details).

Dissociation of actor and spectator models. Model comparison 
results are consistent with our proposal that subjects estimate the 
subjective controllability of an environment by separately tracking 
and comparing an actor and a spectator model. To further test the 
dissociation of the actor and spectator models, we used subject-level 
general linear models (GLMs) to assess trial-by-trial fluctuations of 
decision times. It is known that decision times slow down following 
state prediction errors33,34. The large amount of exploratory trials per 
participant thus allowed us to analyse decision times as a proxy of 
model updating and to evaluate the extent to which controllability 
per se influences the speed of action selection (behaviour: 562 ± 163 
trials; fMRI: 550 ± 115; stress: 519 ± 84). To do so, we extracted the 
prediction errors derived from both the actor and spectator mod-
els (termed δSAS′ and δSS′, average correlation 0.22 ± 0.17). We found 
that both types of prediction errors slowed responding (Fig. 3d) and 
independently explained variance in decision times (Supplementary 
Fig. 3). We also observed that in periods of higher estimated  
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Fig. 2 | Behavioural performance. a, Accuracy in the prediction trials was 
above chance for both conditions in each of the experiments (behavioural: 
n = 50, t(49) = 11.31, P = 2.9 × 10−15, d = 1.60, 95% CI 0.20–0.29; fMRI: 
n = 32, t(31) = 12.67, P = 8.5 × 10−14, d = 2.24, 95% CI 0.24–0.33; stress: 
n = 54, t(49) = 11.64, P = 3.1 × 10−16, d = 1, 95% CI 0.20–0.28; Supplementary 
Table 1). Perm., permutation. b, Rapid recovery of predictive accuracy for all 
reversal types (first pair of predictions after reversal: n = 50, t(49) = 6.64, 
P = 2.4 × 10−8, d = 0.94, 95% CI 0.11–0.20). Accuracies were split by 
reversal type for visual purpose (U denotes uncontrollable rules, C denotes 
controllable rules). c, Positive correlation between working memory 
(WM) capacity indexed by a two-back task (Supplementary Methods) 
and predictive accuracy in the explore-and-predict task for controllable 
(blue: n = 46, ρ = 0.52, P = 1.9 × 10−4, 95% CI 0.18–0.67) and uncontrollable 
(orange, n = 46, ρ = 0.40, P = 0.006, 95% CI 0.13–0.62) contexts. Shaded 
areas represent s.e.m.
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environmental controllability (that is, higher ω), decision times 
were slower. This controllability-dependent slowing correlated pos-
itively with predictive accuracy (Fig. 3e), suggesting that learning 
in controllable contexts is supported by a more controlled action 
selection process even when no reinforcement is at stake.

Separable neural correlates should therefore exist for the predic-
tion errors generated by the actor and spectator probability tracking 
processes, δSAS′ and δSS′. A conjunction analysis first revealed that 
both types of prediction errors activated the typical set of bilateral 

brain areas commonly associated with state prediction errors2,31, 
such as the frontoparietal network and the pre-supplementary 
motor area (Fig. 4a and Supplementary Table 2). Testing directly 
the effect of δSS′ − δSAS′ (mathematically equivalent to pSAS′ − pSS′) 
using a conventional parametric analysis at the whole-brain level 
showed that the mPFC and the nucleus accumbens encoded nega-
tively this signal required for the update of controllability. In both 
cases, region-of-interest analyses indicated a positive response 
to δSAS′ and an absence of a relationship with δSS′ (Fig. 4b,c and 
Supplementary Table 3). A similar pattern was observed in the 
right TPJ (PFWE = 0.09, corrected for family-wise error (FWE)) 
and in the dopaminergic nuclei of the brainstem at a more lenient 
threshold (Supplementary Fig. 4c). To ascertain this dissociation, 
we performed two additional analyses that fully circumvented the 
collinearity issues that might arise due to the correlation of predic-
tion errors (average r = 0.56 ± 0.057). First, we contrasted events 
where only δSS′ or only δSAS′ was above the respective 66th percentile. 
Second, we contrasted the parametric effects of δSS′ and δSAS′ derived 
from two separate first-level GLMs. These analyses confirmed that 
the nucleus accumbens and the mPFC significantly dissociated the 
two prediction error terms, although only the mPFC systematically 
survived correction for multiple comparisons (see Supplementary 
Fig. S4a,b and Supplementary Table 3 for robustness checks).

Neural correlates of dynamic controllability. Having established 
the dissociation of δSAS′ and δSS′ at the behavioural and neural lev-
els, we next probed the correlates of the prediction error δΩ gov-
erning changes in estimated controllability (δΩ = δSS′ − δSAS′ − Ωt−1). 
This second-order learning mechanism is key to accumulate, over 
time, evidence in favour or against the controllability of the ongoing 
rule. Whole-brain analyses revealed a significant negative relation-
ship between δΩ and neurovascular responses in the posterior cin-
gulate (PCC), the right dorsal anterior insula (dAI), the right TPJ 
and the mPFC (Fig. 4d and Supplementary Table 4). Mixed-effects 
region-of-interest analyses including decision times and Ω con-
firmed that these effects reflected a genuine response to control-
lability prediction error, peaking 4–8 s after trial onset.

To unravel the neural correlates of controllability with maximal 
sensitivity, we performed a multivoxel pattern analysis. A support 
vector machine classifier was trained to predict whether streaks of 
consecutive exploratory trials would result in an implicit report of 
subjective controllability in the upcoming pair of prediction trials 
(that is, different or identical responses for each counterfactual). 
Whole-brain maps of classification accuracy were obtained using 
the searchlight method (leave-one-run-out cross-validation). Local 
patterns of activity in the precuneus, the right TPJ, the supple-
mentary motor area, the left premotor cortex and the left dorso-
lateral prefrontal cortex (dlPFC) contained information relative 
to subjective controllability (Fig. 4e and Supplementary Table 5). 
Interestingly, the decoding performance in the ACC and the right 
dlPFC scaled with the lengthening of decision times in controllable 
contexts from one participant to another. The dorsal bank of the 
mPFC and the right TPJ were the only two regions whose activity 
was simultaneously sensitive to subjective controllability (as probed 
by multivoxel pattern analysis), to controllability prediction errors 
and to the instantaneous difference between δSAS′ and δSS′ (Fig. 4f).

Uncontrollable stressors promote the spectator model. We 
applied this new paradigm to better understand the computational 
mechanisms underlying learned helplessness. More precisely, we 
hypothesized that exposure to uncontrollable stressors might bias 
controllability estimation mechanisms to promote reliance on the 
spectator model relative to the actor model. We invited participants 
to perform an active avoidance task exposing them to mild electric 
shocks before completing the explore-and-predict task (Fig. 5a). 
Participants in the controllable group learned to avoid the shock 
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following one of the three possible cues by pressing the correct 
response button (out of six alternatives). Shocks received by partici-
pants in the uncontrollable group were yoked to the former so that 
their decisions did not influence shock probability. As expected, this 
procedure induced a dissociation between actual shock frequency, 
matched across groups by design, and reported shock expectancy 
(Fig. 5b), so that shock expectancy remained high until the end of 
the induction phase in the uncontrollable group.

Despite the absence of aversive reinforcers in the 
explore-and-predict task, we observed clear carry-over effects from 
the shock experiment when analysing the model parameters govern-
ing controllability estimation (Fig. 5c and Supplementary Table 6).  
In particular, the threshold parameter increased significantly in 
the uncontrollable group compared with the controllable group  
(Fig. 5c, left). This parameter determines how much causal evidence 
is required before controllability is inferred. Therefore, when making 
predictions, participants exposed to uncontrollable stressors relied 
more on the spectator model, demonstrated by the reduced average 
value of the arbitrator ω (Fig. 5c, right) as well as the direct analysis 
of subjective controllability estimates, revealing that counterfactual 
predictions were more often identical in the uncontrollable group 
(z = 1.69, P = 0.045, d = 0.48, 95% CI 0.006–0.10, one-tailed).

We found no statistically significant evidence that the stress 
manipulation affected the overall motivation of ability to perform 

the task. Accuracies (U, 0.61 ± 0.16; C, 0.65 ± 0.16%; t(52) = 0.81, 
P = 0.43, d = 0.22, 95% CI −0.05 to 0.13) and decision times  
(U, 2.07 ± 0.73 s; C, 1.97 ± 0.65 s; t(52) = 0.56, P = 0.59, d = 0.14, 95% 
CI −0.48 to 0.27) did not differ significantly across groups in predic-
tion trials. Furthermore, when restricting our analysis to the uncon-
trollable group, the SAS′–SS′–Ω model still outperformed a variety 
of simpler models, including the standard SAS′ model (actor only), 
a SS′ model (spectator only) and a reinforcement learning model 
that only learned through the feedback delivered on predictive tri-
als (Supplementary Fig. 5a). Exposure to uncontrollable stressors 
thus elicits an imbalance between actor and spectator mechanisms 
for transition probability learning consistent with a sustained shift 
in controllability expectations. This finding provides a parsimonious 
account of the cross-contextual generalization of passive strategies, a 
core feature of helpless states7,8. Interestingly, state anxiety, as assessed 
before the experiment, moderated the induction of controllability 
estimation biases. It predicted the average value of the arbitrator only 
in participants exposed to uncontrollable stressors (Fig. 5d).

Since uncontrollable stressors promoted increased reliance on 
the spectator model and decreased reliance on the actor model, we 
expected prediction error-dependent slowing effects to follow a simi-
lar pattern. Confirming this prediction, the type of stress induction 
profoundly altered the slowing of decision times by actor and specta-
tor prediction errors (Fig. 5e). Post hoc tests showed that the effect of 
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Fig. 4 | Neuroimaging. a, A conjunction analysis revealed brain regions whose activity encoded both δSS′ and δSAS′ positively. b,c, Parametric analysis 
of BOLD responses showed that the mPFC (b) and the nucleus accumbens (c) encoded negatively the difference term δSS′ − δSAS′ used to update 
controllability. Both regions encoded δSAS′ positively, but showed no clear-cut modulation by δSS′. At a more lenient voxel-wise threshold (P < 0.005 
uncorrected), the right TPJ also survived correction for multiple comparisons (Supplementary Table 3 and Fig. 4e). d, Brain regions encoding signed 
the second-order prediction errors δΩ. All areas surviving correction for multiple comparisons showed a negative effect, implying greater activity when 
actions appeared less causal than expected. e, Decoding of subjective controllability from brain data. A searchlight analysis based on the six exploratory 
trials preceding a prediction pair revealed that the mPFC, the posterior dmPFC, the right TPJ and the precuneus were sensitive to upcoming reports of 
controllability (pink). Decodability extended to the dlPFC and ACC in participants who displayed slower reaction time (RT) in controllable contexts (red). 
f, Spatial overlap (yellow) between the decodability of subjective controllability (e), controllability prediction errors (d) and difference term δSS′ − δSAS′ 
(b and c). The right TPJ and the mPFC were the only regions highlighted by each of these analyses (threshold of each map: P < 0.005 uncorrected). The 
time courses are shown below (a–d) were only used for robustness checks and visualization. Statistical inferences were based on whole-brain effects at 
standard thresholds (voxel-wise: P < 0.001, uncorrected; cluster-wise: P < 0.05FWe). Shaded areas represent s.e.m. Brain co-ordinates are based on the 
Montreal Neurological Institute system. NAcc, nucleus accumbens; R, right hemisphere.
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δSAS′ was significantly lower (t(52) = −2.45, P = 0.018, d = 0.65, 95% 
CI −0.13 to −0.1) and that the impact of δSS′ was marginally higher 
(δSS′: t(52) = 1.86, P = 0.068, d = 0.51, 95% CI −0.006 to 0.16) in the 
uncontrollable group compared with the controllable group (Fig. 5e).

Discussion
Taken together, these findings shed light on one of the most fun-
damental aspects of human experience, that is, the ability to esti-
mate the extent to which our actions affect our environment and 
to adjust our decisions accordingly. Our results demonstrate that 
this ability involves the comparison of actor and spectator models 

of the ongoing task, which are dissociable computationally, behav-
iourally and neurally. In turn, controllability estimates can be used 
to arbitrate between these models when making predictions about 
future events. The mPFC and the striatum encode the difference 
between the prediction errors generated by each model, while sig-
nals related to the update of controllability estimates are found in a 
more posterior brain network encompassing the TPJ and the PCC. 
Furthermore, exposure to uncontrollable stressors biases this pro-
cess assessed by the explore-and-predict task, hence establishing 
its relevance for the study of neuropsychiatric disorders involving 
altered perceptions of controllability9,12,13,35.

Historically, the concept of task controllability has been heav-
ily influenced by learned helplessness studies in which animals 
granted the ability to actively terminate stressors are compared with 
yoked animals exposed to the exact sequence of stressors but whose 
actions are made independent from stressor termination8,14,15. In 
this line of research, focused on the long-lasting consequences of 
stress exposure, more controllable contexts were defined as those 
in which the mutual information linking the timings of actions and 
stressor offsets is higher36. However, a positive mutual information 
linking an organism’s actions and upcoming states of the environ-
ment is a necessary but not sufficient condition to declare a task 
controllable. For example, the highly positive mutual information 
linking the statements of a weather forecaster with the occurrence 
of rain should obviously not be interpreted as a sign that the fore-
caster controls the weather because the statements of the forecaster 
and the occurrence of rain are both conditioned by past meteoro-
logical states. Moreover, following this incomplete definition, varia-
tions of task controllability were often obtained by manipulating 
uncertainty about future states17,20,28, hence leading to ambiguous 
conclusions regarding the mechanisms underlying the estimation 
of controllability per se and its downstream influence on behaviour.

Formalizing controllability using TE rather than mutual infor-
mation allowed us to design a task in which controllability varied 
independently from uncertainty. In addition, this approach pro-
vided an algorithm for detecting genuine changes in task con-
trollability. Model comparisons showed that, across the three 
experiments, algorithms monitoring controllability using an 
approximation of TE (that is, the SAS′–SS′–Ω scheme) accounted 
better for participants’ choices than a simpler SAS′ learning algo-
rithm. While the neural correlates of state prediction errors elicited 
by the explore-and-predict task were remarkably similar to those 
reported in two-step decision tasks analysed using SAS′ (or actor) 
learning2,37,38, model comparisons revealed the concomitant engage-
ment of SS′ (or spectator) learning. Crucially, the SAS′–SS′–Ω 
model also outperformed two architectures in which controllabil-
ity was derived from statistical features of the SAS′ transition prob-
abilities only. Namely, they exploited the uncertainty (SAS′–SS′–H) 
or the divergence of counterfactual SAS′ transitions (SAS′–SS′–JS) 
to discriminate between controllable and uncontrollable contexts. 
While they predicted qualitatively similar behaviours (for example 
dynamics of subjective controllability change around reversals), 
these alternative models were less efficient at capturing the dynamic 
fluctuations of subjective controllability during the task. Finally, the 
analysis of reaction times confirmed that participants were sensi-
tive to the prediction errors generated by the spectator and actor 
models, whose comparison governed the update of controllability 
estimates in the SAS′–SS′–Ω scheme only.

The actor and the spectator can be viewed as two state spaces 
competing to structure the learning of statistical contingencies. 
When controllability estimates are low, the spectator model repre-
senting only the successive states of the environment dominates. In 
contrast, when controllability estimates are high, the actor model 
representing both states and actions takes over. By defining the 
most appropriate state space dynamically, controllability estimation 
improves predictions about the future states of one’s environment 
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Fig. 5 | Stress experiment. a, Induction of controllable and yoked 
uncontrollable stress followed by the explore-and-predict task. b, Temporal 
evolution of shock expectancy during the induction phase, split by 
condition. c, Impact of induction type on the parameter thresΩ and the 
average value of the arbitrator ω. The value above which Ω was treated as 
evidence for a controllable environment increased significantly following 
uncontrollable stressors (N = 27 per group, t(52) = 4.56, P = 2.7 × 10−4, 
d = 1.1, 95% CI 0.12–0.39), resulting in increased reliance on the spectator 
model when making predictions, as indexed by the reduction of ω at the 
group level (N = 27 per group, z = 2.60, P = 0.009, d = 0.77, 95%  
CI 0.08–0.29) (Supplementary Fig. 5 and Supplementary Table 6).  
d, State anxiety moderated the effect of induction type on the arbitrator 
variable (ω) reflecting controllability estimation. Higher state anxiety was 
associated with greater reliance on the spectator model after exposure 
to uncontrollable stressors (dark pink, N = 27, r = −0.46, P = 0.015, 95% 
CI −0.70 to −0.08) but not after controllable stressors (bright pink, 
N = 27, r = 0.30, P = 0.12, CI −0.16 to 0.61). Correlation coefficients were 
significantly different between uncontrollable and controllable group 
(z = 2.87, P = 0.002). e, The impact of induction type on the slowing of 
decision times induced by δSS′ and δSAS′ (average correlation of the two 
first-order prediction errors 0.45 ± 0.17) was consistent with this increased 
reliance on the spectator model (interaction group by Pe type: F(1,52) = 5.97, 
P = 0.018, η2 = 0.07, 95% CI 0.005–0.20). All error bars and shaded areas 
represent s.e.m. *P < 0.05, ***P < 0.001.

NatuRe HuMaN BeHaViouR | VOL 6 | JUNe 2022 | 812–822 | www.nature.com/nathumbehav 817

http://www.nature.com/nathumbehav


Articles NaTurE HumaN BEHaviour

and can therefore contribute to maximizing utility when reward 
or punishment rates depend on such predictions. And by promot-
ing reliance on a simpler spectator model when the environment 
is deemed uncontrollable, it can also minimize the metabolic cost 
and subjective effort associated with controlled action selection39,40. 
These hypotheses could be tested directly by introducing reinforcers 
in the explore-and-predict task, but it is already worth noting that 
the controllability-dependent arbitration logics can readily explain 
why Pavlovian (equivalent to SS′) and instrumental (equivalent to 
SAS′) learning mechanisms are respectively promoted in uncon-
trollable and controllable contexts28. Furthermore, the preferential 
encoding of actor prediction errors by the mPFC, the striatum and 
the dopaminergic midbrain is consistent with earlier findings show-
ing that the mesolimbic pathway preferentially encodes reward pre-
diction errors in instrumental learning tasks6,41–43. The finding that 
the actor and spectator models only dissociated in these deep struc-
tures close to the midline is consistent with a recent magnetoen-
cephalography study showing that the human brain exploits shared 
‘neural codes’ to address sensorimotor and perceptual demands in 
controllable and uncontrollable contexts44.

By comparing the predictions emanating from the actor and 
spectator models, one can derive an instantaneous causality 
signal (that is, how likely it is that the last action caused the last 
state transition). Encoded by mPFC and striatal blood oxygen 
level-dependent (BOLD) responses, this instantaneous signal can 
then be integrated over time, hence reflecting the causal influence 
of actions over recent transitions. A signature of the second-order 
prediction errors supporting this integration was found in the right 
TPJ, the dorsal mPFC, the right insula and the PCC. The right TPJ 
and the mPFC were the only regions sensitive to the difference of 
the two first-order prediction errors, to these second-order predic-
tion errors used to update controllability and to subjective control-
lability as assessed by the decoding analysis. They are thus strong 
candidates for the implementation of controllability monitoring 
in our task. Supporting this view, the right (but not left) TPJ has 
previously been found to encode the divergence in action–outcome 
distributions24 and the discrepancy between expected and actual 
outcome timings in a simple sensorimotor task alternating control-
lable and uncontrollable trials23. It is also consistent with a study 
showing that mPFC lesions can alter the perception of controlla-
bility in simple instrumental learning tasks45. Given that the mPFC 
and the uncertainty of SAS′ transitions are involved in the trade-off 
between model-based and model-free decision-making systems46, 
these results support the emerging hypothesis7,47 that perceived or 
expected controllability may play a role in the relative influence of 
these systems as assessed by two-step tasks31,48.

Other prefrontal areas were sensitive to variations in subjective 
controllability according to the decoding analysis, probably reflect-
ing adaptations of brain networks to task controllability49 or the 
contribution to controllability estimation of cognitive processes that 
were not captured by the SAS′–SS′–Ω scheme. For example, the ACC 
and the anterior insula, which encoded controllability prediction 
errors, play an established role in the signalling of state uncertainty 
or task volatility, both of which may participate in controllability 
estimation28,50,51. Strikingly, a higher sensitivity of the dlPFC and the 
dorsomedial prefrontal cortex (dmPFC, extending ventrally to the 
dorsal ACC) to controllability was also associated with a stronger 
influence of controllability on decision times. This finding sug-
gests that controllability detection may foster a form of proactive 
response inhibition previously linked with dlPFC and dmPFC activ-
ity52,53. The engagement of more elaborate action selection processes 
may ultimately depend on the valuation of control itself, which is 
known to involve dorsal ACC activity54. Indeed, while this process is 
usually studied by varying task difficulty, it is clear that by gating the 
causal influence of actions, variations of task controllability moder-
ate the expected benefits of exerting cognitive control.

Having described the computational principles and outlined 
neural correlates of controllability estimation, we sought to test 
whether an experimental manipulation could alter this process 
and simultaneously contribute to a better understanding of the 
learned helplessness phenomenon. Indeed, exposure to uncontrol-
lable stressors is known to induce passive responses to subsequent 
controllable stressors, but the origins of this maladaptive strategy 
remain poorly understood. In particular, it is unclear whether prior 
exposure to uncontrollable stressors induces an increased sensi-
tivity to future aversive events, reduces the expectation of control 
with respect to future stressors or reduces expectations of control 
in general8,29. Our results support the latter hypothesis by show-
ing sustained alterations of controllability estimation in human 
participants previously exposed to uncontrollable versus control-
lable stressors. More precisely, the specific increase observed for 
the threshold parameter implies that the former group needed to 
integrate more causal evidence before considering a given rule as 
controllable in the explore-and-predict task. The dAI is involved 
in the modulation of pain perception by controllability20 and was 
found to encode controllability prediction errors in our fMRI 
experiment. Therefore, prior exposure to uncontrollable stressors 
may have altered dAI excitability to distort subsequent controllabil-
ity estimation mechanisms. Supporting this idea, a study showed 
that a lower perception of control mediates the exacerbation of dAI 
responses to physical threats in more anxious individuals, who also 
displayed lower controllability estimates following uncontrollable 
stressors in our data19. Yet, this increased reliance on the spectator 
relative to the actor model following uncontrollable stressors prob-
ably involves several other brain areas, including the mPFC and the 
dorsal raphe nucleus, both of which are highly sensitive to stressor 
controllability14–16.

In sum, the explore-and-predict task allowed us to isolate the 
core computations supporting the inference of task controllability 
by excluding reinforcers and matching uncertainty across contexts. 
The mPFC and the right TPJ emerged as the two most promising 
candidates for the neural implementation of controllability infer-
ence, and it would therefore be interesting to confirm their causal 
contribution using brain stimulation methods in the future. By 
showing that the human brain can compute an approximation of 
TE, our study may help to bridge the gap between neuroscience 
and artificial intelligence research, where TE plays an important 
role in solving unsupervised learning problems55,56. Investigating 
in greater detail the interactions between controllability estimation 
and model-based reinforcement learning mechanisms will consti-
tute an important step in this direction. More invasive techniques 
will also be required to understand how these computations are 
implemented within local neural circuits and how neuromodula-
tors such as dopamine or serotonin mediate their broad impact on 
stress responses and mental health7,14,15,57.

Methods
Participants. For the behavioural experiment, 50 young adult participants (mean 
age 24.7 years, range 18–43 years, 27 women) were recruited via the Sona system 
(a human subject pool management system) of the Radboud University (the 
Netherlands). All participants were included in the data analysis. For the fMRI 
experiment, 32 young adult participants (mean age 25.1 years, range 20–43 years, 
18 women) were recruited through the same system. For the stress experiment, a 
total of 62 participants (mean age 21.8 years, range 18–27 years, 52 women) were 
recruited via the Sona system of Leiden University. One additional participant 
was excluded a posteriori from the fMRI experiment, and four participants were 
excluded from the stress experiments, together with their yoked counterparts 
(see Supplementary Methods for details on exclusion and inclusion criteria). The 
behavioural and fMRI experiments were approved by the local ethics committee 
(CMO region Arnhem/Nijmegen, the Netherlands, CMO2001/095). The stress 
experiment was approved by the Psychology Research Ethics Committee (CEP17-
0905/282) at Leiden University. All participants provided written informed 
consent, in line with the Declaration of Helsinki, and were compensated for their 
participation in the study (€10 per hour for the behavioural and fMRI experiments, 
€7.5 per hour for the stress experiment).
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Explore-and-predict task. In the three experiments, the overall structure of the 
task was identical. Participants performed six (fMRI and stress experiment) or 
seven (behavioural experiment) exploratory trials before a pair of predictions were 
required. Pairs of predictions always probed the two actions available for a given 
state (for example, blue followed by yellow in the circle state), to derive subjective 
controllability from counterfactual responses. Participants received feedback about 
their predictions in 50% (fMRI and stress) or 100% (behavioural experiment) of 
the trails. In the fMRI and stress tasks, feedback was delivered only after one of the 
two counterfactual predictions, to prevent participants from inferring whether the 
rule was controllable or not based on feedback.

On each exploratory trial, two identical geometrical shapes were displayed 
side by side. The colour of each shape determined the action corresponding to left 
and right button presses (side randomly assigned in each trial). An urgency signal 
was displayed after 1.5 s. Transitions to the next state were always governed by 
one of the four rules (Fig. 1c). To maximize the variation of prediction errors, the 
transitions were stochastic (noise 0.05–0.2).

The first prediction trial of each pair was simply displayed at the end of the 
intertrial interval (ITI) of the previous exploratory trial. An urgency signal was 
displayed after 4 s. The hypothetical state–action pair was displayed at the centre 
of the screen, just below a question mark, and the three possible next states were 
displayed as white geometrical shapes at the top of the screen. The selected state 
was then highlighted, and the feedback was displayed when applicable.

The ongoing rule was never changed before four pairs of predictions were 
completed. In the behavioural experiment, the rule changed from then as 
soon as five correct responses were provided in the last six predictions or if 
the last four predictions were accurate. In the fMRI experiment, the rule was 
changed as soon as the P value of a binomial test indicated that accuracy was 
significantly below chance (P < 0.05, one-tailed, chance level 1/3), hence making 
the accuracy threshold more lenient as the number of predictions made for 
a given rule increased. In all experiments, the rule changed after ten pairs of 
predictions, even if performance did not meet the learning criterion. Prediction 
trials were pseudo-randomly ordered with the constraint that each state would 
be tested a similar number of times. An exhaustive description of instructions, 
counterbalancing, reversal schedules, transition noises and timings is available in 
Supplementary Methods.

Stress induction task. To test the impact of prior controllability over 
stress on subsequent controllability estimations, participants underwent a 
stressor controllability manipulation before the explore-and-predict task in 
a between-subjects design. Critically, we employed a between-subjects yoked 
control procedure to match the amount and order of aversive outcome stimuli 
between the controllable and uncontrollable conditions. We randomized 
participants in blocks of four where the controllable condition of a yoked pair was 
always administered first to create the schedule for the yoked counterpart in the 
uncontrollable condition.

Electric stimuli served as stressors in the manipulation task and were delivered 
by a Digitimer DS7 stimulator. First, individual levels of intensity of the electric 
stimulus for the manipulation task were determined using a stepwise procedure 
in which the intensity of the stimulus was gradually increased until participants 
reported a ‘just bearable, but not yet painful’ experience of shock. A yoked control 
design with pre-programmed pseudo-randomized schedule enabled us to match 
the amount and order of electric stimuli between the conditions.

In the controllable condition, a total of four cues (different in shape and 
colour) were presented for at least six repetitions each following a pre-programmed 
pseudo-randomized schedule. Participants could learn by trial and error the 
correct response corresponding to the cue (a key between ‘1’ and ‘6’) to avoid the 
electric stimulus. Critical trials on which participants would be able to prevent the 
electric stimulus for the first time according to the schedule were repeated until the 
participants arrived at a correct response. As such, all participants underwent the 
whole schedule with a minimum of 24 trials and were able to acquire the correct 
response for each cue.

The uncontrollable condition was yoked to the controllable condition, such 
that participants experienced a comparable pattern of events across conditions. 
However, in the uncontrollable condition, participants were not able to acquire 
these action–outcome contingencies to prevent the shocks, whose sequences 
were merely replayed from the yoked participants performing the controllable 
condition. Data collection and analysis were not performed blind to the conditions 
of the experiments. An exhaustive description of counterbalancing, instructions 
and procedures is available in Supplementary Methods.

Computational modelling. The main purpose of all SAS′–SS′–Ω algorithms 
is to provide a way to dynamically estimate the causal influence of actions over 
state transitions by updating a variable termed Ω. In all models, S represents 
the previous state of the environment, A represents the previous action and S′ 
represents the current state of the environment. The local causality estimate Ω 
can only be used as a proxy for controllability, which is a property not of actions 
but of the environment. It is this ‘inferred controllability’ variable, termed ω, 
which can then be used to decide (arbitrate) whether one should make predictions 
using learned S–S′ transitions or learned SA–S′ transitions. Ω is homologous to 

TE, which is itself a generalization of Granger causality to discrete and nonlinear 
domains. See Supplementary Methods for a detailed explanation of the differences 
between TE and Ω.

To demonstrate that participants used a dynamic estimate of TE to solve 
the task, we compared the SAS′–SS′–Ω algorithm with a standard model-based 
architecture tracking SAS′ transitions2. This latter algorithm corresponds to the 
actor model alone. Its asymptotic performance in stable environments is identical 
to that of SAS′–SS′–Ω algorithms. We also compared the SAS′–SS′–Ω algorithm 
with alternative controllability estimation schemes based solely on statistical 
features of SAS′ transitions, namely the uncertainty of SAS′ transitions (SAS′–
SS′–H, lower during periods of high controllability) and the Jensen–Shannon 
divergence of counterfactual SAS′ transitions (SAS′–SS′–JS, higher during periods 
of high controllability). These two alternatives schemes are fully described in 
Supplementary Information.

The actor model tracks transitions linking state–action pairs to newly 
encountered states (that is, SAS′). It updates transition probabilities in the 
following fashion:

Realized transitions:

p
(

s′|a, s
)

← p
(

s′|a, s
)

+ α
(

1 − p
(

s′|a, s
))

.

Unrealized transitions:

p
(

s′|a, s
)

← p
(

s′|a, s
)

(1 − α) ,

Where α ∈ [0,1] controls the extent to which learned transition probabilities are 
determined by the most recent transitions. The prediction error 1 − P(s′|a,s) is 
noted δSAS′ in the main text.

The spectator model tracks transitions linking states to newly encountered 
states (that is, SS′). Therefore, it updates transition probabilities exactly like the 
actor model, except that only states are represented: p(s′|s,a) is simply replaced by 
p(s′|s) in the two equations above, and the prediction error 1 − p(s′|s) is noted δSS′ 
in the main text.

Following the update of the actor and spectator models, we allowed prior 
transition probabilities derived from the instruction phase to constrain the update 
of each model. This was done by multiplying (element-wise) the relevant vector of 
probabilities by the corresponding vector of prior probabilities. For example, after 
a transition from a blue circle (state 2, action 2), the transition probabilities of the 
spectator model were multiplied by [0.5 λ 0.5] (reflecting the fact that states did not 
repeat under uncontrollable rules) and those of the actor model were multiplied by 
[λ 0.5 0.5] (reflecting the fact that the triangle state never appeared after choosing 
blue under uncontrollable rules). Thus, for any λ < 0.5, this prior injection step 
constrained the update of the spectator and actor model in a way that reflected 
the transitions a priori possible under uncontrollable and controllable rules, 
respectively. By altering the prediction errors elicited by each model, prior injection 
had an indirect influence on controllability estimation. For example, a lower value 
of λ leads to a greater increase of estimated controllability following state repetition 
events, by reducing the prediction error generated by the actor model relative to 
the spectator model (see below).

The variable Ω supports the controllability estimation process by tracking the 
expected difference p(s′|a,s) − p(s′|s) dynamically (or, equivalently, δSS′ − δSAS′). The 
logic of this process is that, in a controllable environment, actions contribute to 
predicting the upcoming states and therefore p(s′|a,s) > p(s′|s). Higher values of Ω 
therefore imply higher evidence that the environment is controllable. The update of 
Ω is governed by the following equation:

Ω ← Ω + αΩ
(

p
(

s′|a, s
)

− p
(

s′|s
)

− Ω
)

,

where αΩ ∈ [0, 1] is the learning rate controlling the extent to which Ω is 
determined by the most recent observations.

Since Ω reflects the causal influence of one’s action over state transition, it 
can be used as a proxy to infer whether the environment is probably controllable 
or uncontrollable. To form the arbitration term reflecting this inference and 
accommodate inter-individual differences at this step, Ω is thus transformed using 
a parametrized sigmoid function,

ω = 1/(1 + exp(−βΩ(Ω − thresΩ))),

where thresΩ ∈ [−1, 1] corresponds to the threshold above which Ω is 
interpreted as evidence that the environment is controllable and where βΩ ∈ [0, 
∞] determines the extent to which evidence that the environment is controllable 
(that is, Ω − thresΩ > 0) favours reliance on learned SAS′ transitions when 
making predictions (and vice versa for SS′ transitions when Ω − thresΩ < 0). 
Thus, the variable ω implements the arbitration between the ‘actor’ and the 
‘spectator’ model.

When only SAS′ learning is considered, the probability that a given state S′ = i 
will be observed given s and a is directly given by

p
(

S′ = i
)

= p
(

S′ = i|a, s
)

.
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When the SS′–SAS′–Ω architecture is used, the probability that a given state S′ = i 
will be observed given s, a and ω is directly given by

p
(

S′ = i
)

= ωp
(

S′ = i|a, s
)

+ (1 − ω) p
(

S′ = i|s
)

.

In turn, the probability that the participant will predict that the next state 
would be i (for example, a square) when confronted with the hypothetical state–
action pair s, a (for example, circle state–blue action) is given by

p(prediction = i) = expp(S
′=i)βchoice /

3
∑

j=1
expp(S

′=j)βchoice ,

where βchoice ∈ [−∞, ∞] determines the extent to which the participants will 
systematically select the most likely transition (that is, the highest p(S′ = i), 
according to what has been learned) to make their predictions. A very positive 
βchoice implies that the participant systematically selects this most likely transition.  
A βchoice around zero implies that the participant mostly makes random guesses. 
And a very negative βchoice would imply that the participant mostly goes against 
what he/she has learned.

The full model space was composed of SAS′ alone (two parameters), 
SAS′–SS′–Ω (six parameters), SAS′–SS′–H (five parameters) and SAS′–SS′–JS 
(five parameters). An exhaustive description of these models is available in 
Supplementary Information.

Model fitting procedures. Model fitting was performed using a variational 
Bayesian estimation procedure using the well-validated VBA toolbox58. The fitting 
procedure only attempted to explain decisions made in prediction trials. In other 
words, the decisions made in exploratory trials only indirectly constrained the fit 
by determining the information gleaned between pairs of prediction trials. For 
the behavioural experiments, the prior distributions of the various learning rates 
and the threshold parameter were innately defined as Gaussian distributions of 
mean 0 and variance 3, which approximates the uniform distribution over the 
interval of interest after sigmoid transformations. The prior distributions of βchoice 
and βω parameters were defined as Gaussians of mean 0 and variance 10. For 
the fMRI and the stress experiments, the prior distributions of every parameter 
were defined using the posterior mean and variance obtained from the 50 
participants who passed the behavioural experiment. Hidden states corresponding 
to transition probabilities were systematically initialized at 1/3 (equiprobability 
prior), while Ω was initialized at 0. Detailed information about parameter 
transformation, model fitting, model comparison and simulation procedures is 
available in Supplementary Information.

fMRI acquisition. All images were collected using a 3-T Siemens Magnetom 
Prismafit MRI scanner (Erlangen, Germany) with a 32-channel head coil. A 
T2*-weighted multiband echo-planar imaging sequence with acceleration factor 
8 (MB8) was used to acquire BOLD fMRI whole-brain covered images (repetition 
time 700 ms, echo time 39 ms, flip angle 52°, voxel size 2.4 × 2.4 × 2.4 mm3, slice 
gap 0 mm, field of view 210 mm). This state-of-the-art sequencing protocol 
was optimized from the recommended imaging guidelines of the Human 
Connectome Project, with the fast acquisition speed facilitating the detection 
and removal of non-neuronal contributions to BOLD changes (http://protocols.
humanconnectome.org/HCP/3T/imaging-protocols.html).

The experiment was divided into four blocks lasting on average 7.7 ± 2.1 min 
(662 ± 179 volumes). We recorded participants’ heartbeats using the scanner’s 
built-in photoplethysmograph, placed on the right index finger. Respiration 
was measured with a pneumatic belt positioned at the level of the abdomen. 
Anatomical images were acquired using a T1-weighted magnetization-prepared 
rapid gradient-echo sequence with a generalized autocalibrating partial parallel 
acquisition acceleration factor of 2 (repetition time 2,300 ms, echo time 3.03 ms, 
voxel size 1 × 1 × 1 mm3, 192 transversal slices, flip angle 8°). Field magnitude and 
phase maps were also acquired.

fMRI pre-processing. fMRI data processing and statistical analyses were 
performed using statistical parametric mapping (SPM12; Wellcome Trust Centre 
for Neuroimaging). For each session, the first four volumes were automatically 
discarded by the scanner. Functional images were slice-time corrected, unwarped 
using the field maps and realigned to the mean functional image using a rigid-body 
registration. Functional images were then coregistered to the anatomical T1. Next, 
the anatomical images were segmented based on tissue prior probability maps for 
spatial normalization using the diffeomorphic anatomical registration through 
exponentiated Lie algebra algorithm, and the resulting normalization matrix was 
applied to all functional images. Finally, all images were spatially smoothed with 
a 6 mm Gaussian kernel, except in the decoding analysis for which unsmoothed 
images were used.

fMRI analyses. Statistical analyses of fMRI signals were performed using a 
conventional two-level random-effects approach in SPM12. All GLMs described 
below included the six unconvolved motion parameters from the realignment step. 
We also included the eigenvariate of signals from cerebrospinal fluid in our GLM 

(fourth and lateral ventricular). Moreover, we used a retrospective image correction 
(RETROICOR) method to regress out physiological noise, using ten cardiac 
phase regressors and ten respiratory phase regressors obtained by expanding 
cosines and sines of each signal phase to fifth order. We also included time-shifted 
cardiac rates (lag +6, +10 and +12 s) and respiratory volume (−1 and +5 s) as 
nuisance regressors. All regressors of interest were convolved with the canonical 
haemodynamic response function. All GLM models included a high-pass filter to 
remove low-frequency artefacts from the data (cut-off 96 s) as well as a run-specific 
intercept. Temporal autocorrelation was modelled using an AR(1) process. All 
motor responses recorded were modelled using a zero-duration Dirac function. We 
used standard voxel-wise threshold to generate SPM maps (P < 0.001 uncorrected), 
unless otherwise indicated. All statistical inferences based on whole-brain analyses 
satisfied the standard multiple comparison threshold (PFWE < 0.05) at the cluster 
level unless otherwise indicated. The cluster-size correction was based on random 
field theory. Prediction error and (log-transformed) decision time regressors were 
systematically z-scored within individual blocks to exclude scaling effects.

All GLM models included separate onset regressors for motor responses, for 
prediction trials and for the first trial of each exploratory sequence (where no 
prediction error was elicited). All models also included parametric regressors for 
reaction time and ω (reflecting controllability estimates) on prediction trials. A 
detailed description of the GLMs used to analyse neuroimaging data is available 
in Supplementary Methods. These GLMs only differ in the way exploratory trials 
were treated.

To verify the robustness of our whole-brain results and inspect the time course 
of our parametric effects of interest, we performed mixed-effects analyses on 
BOLD signals filtered and adjusted for nuisance regressors. This adjusted signal 
was extracted from the functional clusters uncovered by whole-brain analyses 
and segmented into trial epochs from −3 to +16 s around the onset of each 
exploration trial (excluding the first of each streak). We then estimated the effect 
of each regressor of interest, at each time point, for all subjects simultaneously. 
Subject identity was included as a random effect, and a subject-specific intercept 
was included. Parametric regressors were z-scored in the same way as in the 
mass univariate analyses. Importantly, this approach was not used for statistical 
inference (since doing so would constitute double dipping) but merely for 
visualization purposes.

Decoding analyses were performed using the TDT toolbox59. Each mini-block 
of six exploratory trials was arbitrarily coded as +1 (controllable) or −1 
(uncontrollable) based on the responses given in the upcoming prediction pair 
(uncontrollable for identical responses, controllable for different responses). We 
used a leave-one-run-out cross-validation scheme with 100 permutations per 
subject, so that classes remained balanced for training. The training was performed 
on the beta values associated with each mini-block using a support vector machine 
classifier (L2-loss function, cost parameter set to 1; Liblinear, version 1.94), without 
feature selection or feature transformation. Since we did not constrain the testing 
sets to have balanced classes, balanced accuracies were used when reporting 
the results of the searchlight analysis (performed within an 8 mm sphere) at the 
whole-brain level.

Statistical procedures. Model selections relied on Bayesian model comparisons 
and exceedance probabilities, as implemented by the VBA toolbox58. The analysis 
of predictive accuracies over time and across conditions relied on two-way 
repeated-measure analyses of variance (ANOVAs) or one-sample t tests, assuming 
normal distribution of the data following arcsin transformation. To assess whether 
predictive performance was significantly superior to chance, we permuted correct 
responses for each hypothetical state independently and compared these permuted 
responses with actual predictions (1,000 permutation per participants). The 
resulting empirical chance levels were indeed higher than the theoretical level 
of 1/3 in all experiments (behavioural: 38.0 ± 2.5%; fMRI: 39.4 ± 1.6%; stress: 
38.6 ± 2.6%), reflecting the fact that participants knew that three transition rules 
out of four did not allow state repetitions.

The analysis of decision times was performed in two steps. First, a logistic 
regression was performed on binarized decision times (median-split). Second, 
group-level significance was assessed by means of one-sample t tests. For the 
analysis of decision times, we excluded trials in which decision times were three 
standard deviations above the mean. Comparison between conditions relied on 
paired t-tests, and comparison between groups (stress experiments) relied on 
two-sample t tests, unless normality assumptions were violated, in which case 
non-parametric equivalents were used (Wilcoxon signed-rank and rank-sum tests, 
respectively). All t tests were two sided unless otherwise indicated. Correlations 
were based on Pearson coefficients unless normality assumptions were violated, 
in which case Spearman rank coefficients were used. Confidence intervals were 
computed using a bootstrapping approach (2,000 permutations).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The experimental paradigm and the code used to generate the figures are available 
at the following address: https://github.com/romainligneul/NHBcontrollability. 
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Second-level SPM images are available at https://neurovault.org/collections/8810/. 
Anonymized data can be accessed using ORCID identification at https://data.
donders.ru.nl/collections/di/dccn/DSC_3017049.01_905.

Code availability
The scripts used to collect and analyse data are available upon publication at 
https://github.com/romainligneul/NHBcontrollability.
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The decoding analyses were done using the TDT toolbox. The psychophysiological interaction analysis 
 was performed using the GPPI toolbox.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Behavioural data related to the three experiments will be made available upon publication at the following address: https://github.com/romainligneul/
controllability. Second-level SPM images will be made available upon publication at the following address: https://identifiers.org/neurovault.collection:8810. Raw 
fMRI will be made available upon request to the corresponding authors.
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Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size The sample sizes are explicitly reported in the main manuscript. Overall, we tested 50 subjects in the 
 behavioral experiment, 33 subjects in the fMRI experiment in 62 subjects in the stress experiment. 
The explore-and-predict task being a new experimental paradigm with no equivalent in the literature, 
no explicit sample size determination was performed before the behavioral experiment.  
For the fMRI experiment, we included 32 participants. This exceeds the average sample size of fMRI 
task-based studies (N=28.5 in 2015, Turner et al., 2018, Communication Biology). Such sample size is sufficient  
to achieve brain-wide correlation of 2-nd level SPM maps superior or equal to 0.75 for working memory tasks, 
social inference tasks, motor tasks and emotion recognition tasks (Turner et al., 2018). 
In order to maximize the accuracy of individual parameter estimation, we maximized the number of trials 
without exceeding the threshold of 40 minutes often considered as a point of diminishing returns for 
task-based fMRI studies Evan Lee, 2019, Communication Biology). 
For the stress experiment, we included 54 participants in total. In their study investigating the effects of 
subjective controllability on working memory performance following a stress induction protocol,  Wanke and 
Schwabe reports a effect size of 0.931 (Cohen’s d). Post-hoc power calculation indicates that this effect size  
requires a sample size of 26 participants per group to achieve a power of 0.95 (alpha: 0.05).

Data exclusions No subjects were excluded from the behavioral experiment (final N=50). One subject was excluded 
 from the fMRI experiment (final N=32), and 6 additional subjects were excluded for the analysis of  
brainstem responses. Eight subjects were excluded from the stress experiments (final N=54). No data  
points were excluded, except for the analysis decision time in which trials were decision times superior  
to mean + 3SD were excluded. These exclusions are justified in the main manuscript.

Replication The main behavioral results were replicated across the behavioral, fMRI and stress experiments  
(i.e. Bayesian model selection and reaction time analyses). The conclusions draw based on fMRI data were 
 robust to qualitative variations in statistical methods.

Randomization The ordering of blocks was counterbalanced across subjects in the explore-and-predict task, so 
that controllability and rule reversal effects could not be explained by time.  
The lateral ordering of action colors (exploration trials) and possible upcoming states (prediction trials) 
was pseudorandomized so as to counterbalance lateralization effects within subjects.

Blinding No blinding procedure was used

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional, 
quantitative experimental, mixed-methods case study). 

Research sample State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic 
information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For 
studies involving existing datasets, please describe the dataset and source.

Sampling strategy Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to 
predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a 
rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and 
what criteria were used to decide that no further sampling was needed.

Data collection Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper, 
computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and 
whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.

Timing Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample 
cohort.
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Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the 
rationale behind them, indicating whether exclusion criteria were pre-established.

Non-participation State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no 
participants dropped out/declined participation.

Randomization If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if 
allocation was not random, describe how covariates were controlled.

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested, 
hierarchical), nature and number of experimental units and replicates.

Research sample Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National 
Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and 
any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets, 
describe the data and its source.

Sampling strategy Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size 
calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data collection Describe the data collection procedure, including who recorded the data and how.

Timing and spatial scale Indicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for 
these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which 
the data are taken

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them, 
indicating whether exclusion criteria were pre-established.

Reproducibility Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to 
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Randomization Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were 
controlled. If this is not relevant to your study, explain why.

Blinding Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why 
blinding was not relevant to your study.

Did the study involve field work? Yes No

Field work, collection and transport
Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

Location State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).

Access & import/export Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in 
compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority, 
the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 



4

nature research  |  reporting sum
m

ary
April 2020

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used Describe all antibodies used in the study; as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the 
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) State the source of each cell line used.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for 
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

Name any commonly misidentified cell lines used in the study and provide a rationale for their use.

Palaeontology and Archaeology
Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the 

issuing authority, the date of issue, and any identifying information).

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where 
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are 
provided.

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance 
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals For laboratory animals, report species, strain, sex and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field; report species, sex and age where possible. Describe how animals were 
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released, 
say where and when) OR state that the study did not involve wild animals.

Field-collected samples For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature, 
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance 
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Human research participants
Policy information about studies involving human research participants

Population characteristics Behavioral experiment: mean age: 24.7, range: 18—43, 27 women 
fMRI experiment: mean age: 25.1, range: 20—43, 18 women 
Stress experiment: mean age = 21.8; range: 18-27, 52 women

Recruitment For the behavioural experiment, fifty young adult participants  were recruited via the Sona system  
(human subject pool management system) of the Radboud University (The Netherlands). 
For the fMRI experiment, thirty-two young adult participants were recruited through the same system. 
For the stress experiment, a total of 62 participants were recruited via the Sona system of Leiden University. 
All participants provided written informed consent, in line with the declaration of Helsinki and were compensated 
for their participation in the study (10€/hour for the behavioural and fMRI experiments, 7.5€/hour for the stress 
experiment)

Ethics oversight The behavioural and fMRI experiments were approved by the local ethics committee (CMO region 
 Arnhem/Nijmegen, The Netherlands, CMO2001/095). The stress experiment was approved by the  
Psychology Research Ethics Committee (CEP17-0905/282) at Leiden University. All participants provided 
written informed consent, in line with the declaration of Helsinki.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.

Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.

Outcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern
Policy information about dual use research of concern

Hazards
Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented 
in the manuscript, pose a threat to:

No Yes
Public health

National security

Crops and/or livestock

Ecosystems

Any other significant area

Experiments of concern
Does the work involve any of these experiments of concern:

No Yes
Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents

Enhance the virulence of a pathogen or render a nonpathogen virulent

Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

Any other potentially harmful combination of experiments and agents
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ChIP-seq

Data deposition
Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

For "Initial submission" or "Revised version" documents, provide reviewer access links.  For your "Final submission" document, 
provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session 
(e.g. UCSC)

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to 
enable peer review.  Write "no longer applicable" for "Final submission" documents.

Methodology

Replicates Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and 
whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and lot 
number.

Peak calling parameters Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files 
used.

Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.

Software Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a community 
repository, provide accession details.

Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a 
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the 
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell 
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state; event-related or block design.
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Design specifications : Task

Behavioral performance measures : During the task, we recorded responses and response times. Behavioral performance  
was assessed mainly using the accuracy of the choices made in prediction trials reported 
Fig. 2a

Acquisition

Imaging type(s) : Anatomical, functional, magnitude and phase field maps. A DTI scan was collected at the very end of 
 the experiment (data not analyzed)

Field strength : 3T Siemens Magnetom Prismafit MRI scanner (Erlangen, Germany)

Sequence & imaging parameters : All images were collected using  a 32-channel head coil. A T2*-weighted multiband  
echo  planar imaging sequence with acceleration factor 8 (MB8) was used to acquire 
 BOLD-fMRI whole-brain covered images (TR = 700 ms, TE = 39 ms, flip angle = 52,  
voxel size = 2.4 × 2.4 × 2.4 mm3 , slice gap = 0 mm, and FOV = 210 mm).

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI Used Not used

Preprocessing

Preprocessing software : SPM12

Normalization DARTEL normalization

Normalization template : Template IXI555 MNI152 (1.5mm isotropic) from the CAT12 toolbox

Noise and artifact removal : Visual insprection, no removal needed

Volume censoring : No volume censoring needed. Head motion was minimized using tight cushions (<1.5mm)

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and 
second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether 
ANOVA or factorial designs were used.

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference
(See Eklund et al. 2016)

Classical 2-step inference. 
Voxel-wise cluster forming threshold: p<0.001 uncorrected 
Cluster-wise: p<0.05 FWE 
Minimal cluster extent: 10 voxels

Correction : FWE

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation, 
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph, 
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency, 
etc.).

Multivariate modeling and predictive analysis : Independent variable: whether a given streak of 6 exploratory trials 
 would be followed by different counterfactual predictions (+1) or identical  
counterfactual predictions (-1) 
Feature extraction: all voxels withi.n the searchlight radius were used 
Dimensionality reduction: none 
Model: Support Vector Machine with L2 cost function (cost=1) 
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Training: A complete leave-one-run out cross-validation procedure was used. 
Within each fold, controllable and uncontrollable targets were in equalized using  
a bootstrapping approach (10 draw per fold). 
Evaluation metrics: balanced classification accuracy was used, since we did not 
constrain the test sets to have equal number of controllable and uncontrollable  
targets
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