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ABSTRACT

BACKGROUND: Prior work has proposed that major depressive disorder (MDD) is associated with a specific
cognitive bias: patients with depression seem to learn more from punishment than from reward. This learning bias has
been associated with blunting of reward-related neural responses in the striatum. A key question is whether negative
learning bias is also present in patients with MDD and comorbid disorders and whether this bias is specific to
depression or shared across disorders.

METHODS: We employed a transdiagnostic approach assessing a heterogeneous group of (nonpsychotic) psychi-
atric patients from the MIND-Set (Measuring Integrated Novel Dimensions in Neurodevelopmental and Stress-Related
Mental Disorders) cohort with and without MDD but also with anxiety, attention-deficit’/hyperactivity disorder, and/or
autism (n = 66) and healthy control subjects (n = 24). To investigate reward and punishment learning, we employed a
deterministic reversal learning task with functional magnetic resonance imaging.

RESULTS: In contrast to previous studies, patients with MDD did not exhibit impaired reward learning or reduced
reward-related neural activity anywhere in the brain. Interestingly, we observed consistently increased neural
responses in the bilateral lateral prefrontal cortex of patients when they received a surprising reward. This increase
was not specific to MDD, but generalized to anxiety, attention-deficit/hyperactivity disorder, and autism. Critically,
increased prefrontal activity to surprising reward scaled with transdiagnostic symptom severity, particularly that
associated with concentration and attention, as well as the number of diagnoses; patients with more comorbidities
showed a stronger prefrontal response to surprising reward.

CONCLUSIONS: Prefrontal enhancement may reflect compensatory working memory recruitment, possibly to
counteract the inability to swiftly update reward expectations. This neural mechanism may provide a candidate

transdiagnostic index of psychiatric severity.

https://doi.org/10.1016/j.bpsc.2020.08.011

Major depressive disorder (MDD) is a highly debilitating psy-
chiatric disorder with an estimated yearly prevalence of 4.4%
worldwide (1). Key symptoms of MDD are persistent negative
mood and diminished interest or inability to experience plea-
sure (also termed anhedonia) (2). These symptoms have been
linked to a so-called negative learning bias; patients with MDD
are thought to weigh negative events more strongly than
positive events in their subsequent decisions. Experimentally,
this has been measured as reduced learning from positive
feedback (reward) compared with negative feedback (punish-
ment) (3-12). This behavioral bias is often accompanied by
blunted reward-related activity in the striatum, a brain region
involved in processing reward and reward prediction
(10,13,14). For example, Robinson et al. (7) observed impaired
reward-based learning and blunted neural response in the
striatum to surprising rewards in MDD compared with control
subjects. This negative learning bias concurs with a larger

body of work showing that patients with MDD focus more on
negative events than on positive events in other cognitive
domains. For example, patients with MDD show automatic and
selective preferential processing of negative information over
neutral or positive information in attention, interpretation, and
memory (2,15,16).

However, two key issues have so far been overlooked,
namely the generalizability and specificity of the bias to real-
world MDD. Most prior studies have relied on highly selected
samples from the (sub)clinically depressed population, with
limited age ranges, relatively small sample sizes, and
nonclinical control samples with low depressive symptom
severity. Patient control groups were often not included.
Therefore, it remains unclear whether the bias is specific to
MDD or rather is also seen in other disorders without comorbid
MDD. In addition, many studies 1) have included only patients
with no or few comorbid diagnoses, 2) did not extensively
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assess comorbidity, or 3) did not purposefully integrate this
factor into the study design (4,7,10,17-20). While these types
of studies are informative for understanding potential mecha-
nisms and neurocognitive deficits underlying MDD, this
approach does not consider one key observation, namely that
up to 70% of psychiatric patients with MDD are diagnosed
with at least one comorbid mental disorder, including anxiety
disorder, addictive disorder, attention-deficit/hyperactivity
disorder (ADHD), and autism spectrum disorder (ASD)
(21-23). It remains unclear whether any negative learning bias
is also seen in patients with MDD who have other disorders. To
tackle these issues, we adopted a transdiagnostic approach in
line with the recommendations of the Research Domain
Criteria framework. This approach targets the transdiagnostic
mechanisms of psychopathology beyond diagnostic labels
(24,25) and allowed us to test 1) its generalizability to real-
world comorbid depression and 2) its specificity to MDD
compared with other disorders. Critically, we employed the
reward/punishment reversal learming paradigm that was also
used in a previous study demonstrating a negative learning
bias and reduced reward-related activity in the striatum (7). We
predicted impaired reward versus punishment learning and
reduced reward versus punishment-related brain activity in the
striatum in MDD versus other disorders. However, based on
work suggesting that negative memory bias may be a trans-
diagnostic mechanism of psychopathology (26), we also
considered the possibility that a negative learning bias across
diagnoses may reflect a transdiagnostic index or risk factor of
psychiatric severity, rather than MDD severity alone.

To recap, the first aim of the current study was to test the
generalizability of the negative learning bias seen in MDD to a
comorbid patient sample with MDD but also at least one co-
morbid disorder, including anxiety, addiction, ADHD, and ASD
(other mental disorders, except psychotic disorders, were
allowed). This approach attempted to reproduce the high co-
morbidity levels observed in the larger population for which
highly selected samples might not be very representative. The
second aim was to investigate the specificity of any observed
index of negative learning bias and associated striatal activity
to depressive symptoms compared with other disorders.
Observed neural and/or behavioral markers may reflect an
MDD-specific deficit or, alternatively, a transdiagnostic index
of psychiatric severity more generally.

METHODS AND MATERIALS

General Procedure and Participants

The current study is part of MIND-Set (Measuring Integrated
Novel Dimensions in Neurodevelopmental and Stress-Related
Mental Disorders), a large cohort study run by the Department
of Psychiatry at Radboud University Medical Center in Nijmegen,
The Netherlands. MIND-Set includes new outpatients (18-65
years of age) with depressive disorder (MDD or dysthymia),
anxiety disorder, ADHD, and/or ASD. Disorders were assessed
with the use of validated semistructured clinical interviews ac-
cording to DSM criteria (see Supplement for full procedure).
Participants were excluded if they had a current psychotic dis-
order, an 1Q estimation <70, sensorimotor disabilities, or insuf-
ficient comprehension of the Dutch language. MIND-Set was
approved by the local ethics committee.

The final sample included 66 patients and 24 healthy control
participants (HCs) (see Supplemental Methods). Patients were
divided into two groups: those with a current depressive dis-
order (n = 43) and those without one (n = 23). In both groups,
patients could also have remitted depressive disorder, anxiety
disorder, ADHD, and/or ASD. To classify ASD and/or ADHD,
patients were first screened and, in case of a positive
screening, were further assessed by interviews (Supplement).
Three of the included patients did not receive a final diagnosis
of ASD and/or ADHD by the end of the study owing to, for
example, dropout during the diagnostic process.

We included 24 healthy participants with no current or life-
time psychiatric disorder assessed with the same measures
that were used for the patients. They were matched to the
patient sample on age, gender, and education level (Table 1).
HCs participated in the same tasks and questionnaires as
patients (Table S1). Written informed consent was obtained
from all subjects prior to participation.

For all participants, we collected sociodemographic infor-
mation (age, gender, and level of education), psychiatric
symptom severity with different questionnaires, background
neuropsychology (verbal 1Q and working memory capacity),
and medication use (see Supplement for details).

Deterministic Reversal Learning Task

A modified version of an established deterministic reversal
learning task was employed to investigate learning biases
(27) (Figure 1A). The task was programmed with Presentation
version 16.2 (Neurobehavioral Systems, Inc., Berkeley, CA).
In this task, participants needed to predict whether a specific
picture would be followed by a positive outcome (a reward) or
a negative outcome (a punishment). On each trial, two
vertically adjacent pictures were displayed in grayscale
(Figure 1A): a picture of a body and a picture of a scene. We
used 18 different unique exemplars of each category (18
bodies and 18 scenes). The decision to use two categories of
pictures (rather than just two pictures) was guided by an in-
terest in examining neural activity in category-specific visual
association cortices. Results from this parallel research
question will be described elsewhere. The location of the
pictures (upper or lower half of the screen) was randomized.
One of the pictures was highlighted by a black border. Par-
ticipants needed to predict whether this highlighted picture
would lead to a reward or punishment outcome by pressing
either a left or right button on a button box (counterbalanced
across subjects). Failure to respond within the time limit
(1500 ms) was followed by the message “Too late.” In case of
a timely response, the outcome (reward or punishment) was
presented with the two pictures still on the screen. The
reward outcome was a green happy smiley accompanied by
the text “+ €100”; the punishment outcome was a red sad
smiley accompanied by the text “— €100.” Note that the
outcome did not depend on participants’ responses. The
critical manipulation was that one category (bodies or
scenes) always led to reward, and the other category always
led to punishment. Participants needed to learn these
category—outcome associations by trial and error and adapt
their predictions and responses accordingly.
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Table 1. Sample Characteristics: Demographic Information and Group Comparison Statistics

MDD Present, n = 43 MDD Absent, n = 23 HC, n =24 Group Comparisons
Age, Years, Mean (SD) 38.23 (13.19) 36.04 (11.46) 35.46 (13.03) Fog7 = 0.441, p = .645
Gender, n M: 22 M: 14 M: 9 %2, =261, p=.271
F: 21 F:9 F: 15

NART Score, Mean (SD) 101.50 (11.04) 99.14 (9.20) 96.35 (19.81) Fog1 =1.05, p = .354
SWM Errors, Mean (SD) 20.30 (18.32) 16.14 (13.03) 20.38 (22.30) Fage = 0.41, p = 667
Level of Education, n %% =517, p = 522

(Almost) none 2 0 0 -

Low 4 2 -

Middle 16 11 8 -

High 18 14 -
IDS Score, Mean (SD) 39.72 (10.92) 25.70 (10.90) 4.42 (3.92) Fag; = 104.86, p < .001
Number of Diagnoses 4?5 =825, p=.143

0? - 3 - -

1 7 3 - -

2 14 9 - -

3 13 6 - -

4 5 2 - -

5 a4 - - -
Medication

SSRIs 19 5 - -

Benzodiazepine 10 2 - -

Antipsychotics 7 3 - -

DA 4 3 - -

Opioids 4 - - -

TCA 2 1 - -

Lithium 1 - - -

DA, dopaminergic medication; F, female; HC, healthy control subjects; IDS, Inventory of Depressive Symptomatology-Self-Report version; M,
male; MDD absent, patients without a current depressive episode but with a different diagnosis; MDD present, patients with a current
depressive episode; NART, National Adult Reading Test; SSRI, selective serotonin reuptake inhibitor; SWM, spatial working memory; TCA,

tricyclic antidepressants.

“Note that on the number of diagnoses, we included 3 patients who did not finish the diagnostic process and were included without a final

diagnosis.

This deterministic link between category and outcome
changed after 4 to 6 consecutive correct predictions, so that now
the category previously associated with reward (e.g., bodies)
would be associated with punishment and vice versa for the other
category (defined as a reversal) (Figure 1B). Upon such reversals,
an unexpected reward was presented after a picture category was
highlighted that was previously followed by a punishment (and
vice versa). The participants were required to adapt their pre-
dictions accordingly on the following trials (the picture category
predicting reward would now be predicting punishment and vice
versa). Prediction accuracy on the trials after the unexpected
reward or punishment indicated how quickly participants adapted
their predictions based on unexpected outcome. Note that a
different exemplar from the same category would always be
highlighted on the trial after a reversal. This ensured that the need
for a response switch was matched between the unexpected
reward and unexpected punishment trials (28,29). After 16
consecutive incomrect predictions, the task was terminated,
assuming a failure to follow task instructions. If possible and in
agreement with the participants, the task would restart. Blocks of
trials that were prematurely terminated were excluded from further
analysis. We included 3 participants in the analysis (1 HC and 2
patients with MDD) who had one restarted block.

Statistical Analyses

We investigated the effects of expectancy (unexpected > ex-
pected), valence (reward > punishment), and the interaction
expectancy X valence (unexpected reward — expected reward
> unexpected punishment — expected punishment) on the
behavioral outcome measures (accuracy and reaction time) and
in second-level functional magnetic resonance imaging (fMRI)
analyses. We then examined the differences between the groups
and as a function of symptom severity, as explained in detail
below. For behavior, we used mixed models [R package Ime4
(30)], employing generalized mixed models to test trial-by-trial
accuracy and used linear mixed models for reaction times. We
tested the fixed effects of expectancy, valence, group (HCs,
patients with a current depressive episode [MDD present], or
patients without a current depressive episode but with a different
diagnosis [MDD absent]), and all interactions. The model
included a full random-effects structure with random slope and
random intercept (31,32). Note that accuracy and reaction time
on reversal trials represent data from trials after an unexpected
outcome (i.e., a reversal) (Figure 1B).

Imaging was conducted on a Siemens Prisma 3T scanner
using a 32-channel head coil. Whole-brain T2"-weighted blood
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Figure 1. Task and behavioral results. (A) Task
overview. After a response was given, the outcome
was shown for 500 ms after a delay of 1000 ms.
There was a jittered intertrial interval of 1500 to 3000
ms, after which two pictures were presented. Here
we show an example of an unexpected punishment
(UP) trial. First, the body is associated with reward.
The body is selected, and therefore the correct
prediction is a reward. However, now the outcome
reverses unexpectedly, showing an unexpected
punishment outcome. In the behavioral analyses, we
examined the trials after such an unexpected
outcome to assess whether the new category—
o outcome contingency was learned. For the func-
" tional magnetic resonance imaging analyses, we
“! examined outcome-locked activity. Four blocks of
the task were performed. Each block consisted of
120 trials and lasted about 10 minutes. Reversals
following reward and punishment were randomized
across the blocks. Number of reversals per partici-
pant depended on performance. (B) Example of
series of trials before and after the unexpected
punishment as presented in (A). (C) Accuracy of the
4 trial types for the 3 groups. There were no signif-
icant main effects or interactions of the factors ex-

Body
Punishment
Punishment

e

MOD present MDD absent Healthy control MDD present

MDD absent

pectancy, valence, and group (all ps > .25). (D)

Healthy control
feont Reaction times on the 4 trial types for the 4 groups.

There was a significant interaction between valence and expectancy (121 =4.27, p = .038), with the fastest responses being after surprising reward outcomes.
There was a significant main effect of valence (2, = 10.20, p = .001), with faster predictions being for reward compared with punishment, and there was a
significant main effect of expectancy (¥, = 37.42, p < .001), with faster predictions after receiving surprising outcomes compared with expected outcomes. No
significant interactions with group were observed (all ps > .39). EP, expected punishment; ER, expected reward; MDD absent, patients without a current
depressive episode but with a different diagnosis; MDD present, patients with a current depressive episode; UR, unexpected reward.

oxygen level-dependent fMRI data were acquired using mul-
tiecho echo-planar imaging. Brain images were preprocessed
and analyzed using SPM12 (Wellcome Department of Cogni-
tive Neurology, London) and MATLAB R2018a (The Math-
Works, Inc., Natick, MA). A first-level general linear model was
estimated and included regressors for each of the possible
outcomes (specifically unexpected reward, unexpected pun-
ishment, correctly predicted expected reward, correctly pre-
dicted expected punishment, incorrectly predicted expected
outcomes, miss trials, and 6 motion regressors, i.e., 12 re-
gressors in total). Regressors were estimated at the onset of
outcome presentation and convolved with a hemodynamic
response function.

We calculated individual contrast maps at the first level for
expectancy, valence, expectancy X valence, and the reverse
contrasts. The individual contrast maps were then included in a
second-level random-effects analysis to investigate differ-
ences between the groups and as a correlation with the
questionnaire scores. A whole-brain voxel-level threshold of p
< .001 uncorrected was applied with a cluster-level familywise
error correction for multiple comparisons of p < .05. See the
Supplement for a complete description of the behavioral an-
alyses as well as fMRI data acquisition and analyses.

To address our primary aims of assessing generalizability
and specificity to MDD, we adopted a multistep procedure in
the analyses (Figure S1). First, all brain and behavior analyses
were performed using two different stratification approaches of
the patient sample: a categorical approach and a dimensional
approach. In the categorical approach, we compared 3 groups:
HCs, MDD present, and MDD absent. In the dimensional
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approach, we stratified the sample based on depressive
symptom severity, as measured with the Inventory of
Depressive Symptomatology-Self-Report version (IDS) (33)].
Second, we repeated this set of analyses (categorical and
dimensional) three times for each of the other three diagnoses
(anxiety, ADHD, and ASD). In particular, we stratified the
sample categorically, based on anxiety, ADHD, or ASD diag-
nosis (HCs vs. MDD present vs. MDD absent), and dimen-
sionally, using the Anxiety Sensitivity Index (ASI) (34) for
anxiety sensitivity, the Conners’ Adult ADHD Rating Scale
(CAARS) (35) for ADHD, and the Autism Spectrum Quotient
(AQ-50) (36) for ASD. This multistep procedure was adopted
for the behavioral data (with accuracy and reaction time as
dependent variables) as well as for the brain data (whole-brain
analyses).

We also assessed whether potential differences in brain
activity between patients and control subjects might be
accounted for by general psychiatric severity. To this end,
first we conducted a random-effect analysis with only the
number of diagnoses as a covariate. Second, we added the
number of diagnoses as a covariate in the general linear
model examining the difference among MDD present, MDD
absent, and HCs (categorical approach) to assess whether
the effects we found could be accounted for by general
psychiatric severity.

We found significant associations between neural activity
and total scores on all 4 symptom questionnaires as well as on
the number of diagnoses. Therefore, we aimed to explore the
nature of this transdiagnostic effect by leveraging all individual
item scores across the multiple symptom questionnaires in a
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Table 2. Whole-Brain Results
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MNI
Coordinates  gjyster FWE Cluster-
Contrast Region X y z Size t Level p
MDD Present > HC
Surprising reward (unexpected reward — expected reward > Left inferior frontal gyrus —-48 35 18 49  4.82 .005
unexpected punishment — expected punishment) Right inferior frontal gyrus 46 28 18 31 4.46 .036

MDD Absent = HC

Surprising reward (unexpected reward — expected reward > Right insula 5 14 -7 133 5.08 <001
unexpected punishment — expected punishment) Left inferior frontal gyrus _55 18 7 64  4.09 001
Right inferior frontal gyrus 43 28 18 36 3.72 .020
IDS
Surprising reward (unexpected reward — expected reward > Left inferior frontal gyrus 211 —48 38 14 524 <.001
unexpected punishment — expected punishment) Left inferior temporal gyrus 187 -52 —-60 -7 4.86 <.001
Vermis 98 4 —-52 7 461 <.001
Right inferior frontal gyrus (operculum) 111 57 18 4 452 <.001
Right superior frontal gyrus (medial) 52 12 32 38 4.50 .003
Left middle occipital gyrus 63 —-30 -74 32 424 .001
Left inferior parietal 48 —-30 -—-18 28 4.43 .005
Right angular gyrus 196 43 -—-46 28  4.40 <.001
Right calcarine fissure 97 26 -—-66 10 4.28 <.001
Right lingual gyrus 65 32 -84 —-18 4.24 .001
Precuneus 196 1 —63 56 4.20 <.001
Right putamen 37 29 38 14 412 .016
Left middle frontal gyrus 77 -4 4 56 4.06 <.001
Right inferior frontal gyrus (operculum) 29 46 10 35 3.9 .042
Reward > punishment Right cerebellum 42 15 -74 -21 4.05 .015

FWE, familywise error; HC, healthy control subjects; IDS, Inventory of Depressive Symptomatology-Self-Report version; MDD absent, patients
without a current depressive episode but with a different diagnosis; MDD present, patients with a current depressive episode; MNI, Montreal

Neurological Institute.

post hoc analysis. Specifically, a factor analysis (principal
component analysis) was conducted comprising all items of
the IDS, ASI, CAARS, and AQ-50, resulting in a total of 120
items. This analysis was done on all MIND-Set participants
(569 patients and 101 HCs).

Furthermore, we examined a selected subsample of pa-
tients with MDD without comorbidity to be able to compare the
results with findings from previous studies that included only
patients with MDD without comorbidity. Finally, based on the
study of Robinson et al. (7), we performed an additional region
of interest analysis specifically targeting neural activity in the
striatum. Results of these analyses are presented in the
Supplement.

RESULTS

Demographics and Behavioral Results

Patient groups and controls did not differ significantly in terms
of age, gender, working memory capacity, verbal 1Q, or level of
education (Table 1; see Table S1 for a detailed description of
the questionnaires and tasks used). Critically, the number of
diagnoses did not differ between patients with MDD and pa-
tients without MDD. As expected, there was a significant group
difference in depressive symptom severity (IDS), with lower
ratings in the HC group than the MDD present group

(tseoo = —19.11, p < .001) and MDD absent group

(to7.30 = —8.83, p < .001). Depressive symptom ratings of the
MDD absent group were lower than those of the MDD present
group (t54_()0 = —4.98, p < 001)

There were no differences among the groups on accuracy
and reaction time; the patients performed the task as well as
the HCs (Figure 1C, D). Furthermore, accuracy and reaction
time also did not vary with any of the other diagnostic cate-
gories (anxiety, ADHD, or ASD), and there were also no sig-
nificant effects of the IDS, ASI, CAARS, or AQ-50 scores on
accuracy or reaction time. See the Supplement for a detailed
report.

Whole-Brain fMRI Results

Patients with MDD exhibited enhanced reward prediction
error-related blood oxygen level-dependent signals in the
bilateral inferior frontal gyrus compared with HCs (Table 2 and
Figure 2A) (contrast: unexpected reward — expected reward >
unexpected punishment — expected punishment). This
enhanced lateral prefrontal cortex (LPFC) response was also
observed in patients without MDD compared with HCs
(Table 2). Conversely, no group differences were found be-
tween the MDD present and MDD absent groups. There were
no other effects of group as a function of valence or
expectancy.

A breakdown of the interaction demonstrated that the
increased activity in the LPFC was driven by an enhanced
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IDS association

ADHD > HC

Categorical

-20

response to unexpected reward. First, we examined the
separate contrasts unexpected reward > expected reward and
unexpected punishment > expected punishment. For the
contrast unexpected punishment > expected punishment,
there were no significant clusters in any of the group com-
parisons. For the contrast unexpected reward > expected
reward, in the comparison between the MDD present group
and the HC group there was a significant cluster in the LPFC
(left inferior frontal gyrus; Montreal Neurological Institute [MNI]
coordinates x = —44, y = 28, z = 21; cluster size = 41, t = 4.37,
corrected p = .025), and in the comparison between the MDD
absent group and the HC group there were clusters in the
anterior cingulate cortex (MNI coordinates x =4,y =18, z = 21;

Figure 2. Overlap between patient groups and
dual-coded whole-brain maps. (A) Number of par-
ticipants with each disorder. All patients with major

MDD depressive disorder (MDD) (marked in red) were in
the MDD present group, and all patients without
Anxiety MDD were in the MDD absent group. Note that this
figure does not include 3 participants without a final
ASD diagnosis and 1 participant who was diagnosed with
ADHD only remitted MDD. The size of the square does not

represent the number of patients. (B) Categorical
results. (C) Dimensional results. Clusters show
positive (red) activity for the contrast of the interac-
tion of group X valence x expectancy (unexpected
reward — expected reward > unexpected
punishment — expected punishment), with the
groupwise comparisons in (B) and the associated
questionnaire scores in (C). The maps are dual
coded and display both the contrast estimate (x-
axis) and unthresholded t values (y-axis). Significant
clusters (cluster level corrected, familywise error, p
< .05) are marked with a black border. These whole-
brain maps are displayed using a procedure intro-
duced by Allen et al. (63) and implemented by
Zandbelt (64). ADHD, attention-deficit/hyperactivity
disorder; Anx, anxiety; AQ, Autism Spectrum Quo-
tient; ASD, autism spectrum disorder; ASI, Anxiety
Sensitivity Index; CAARS, Conners’ Adult ADHD
1= Rating Scale; HC, healthy control subjects; IDS, In-
ventory of Depressive Symptomatology—Self-Report
version; n.s., nonsignificant.

02 0.4
Dimensional

04

I
08

cluster size = 40, t = 4.10, corrected p = .027) and left insula/
inferior frontal gyrus (MNI coordinates x = —38, y = 18,
z = —10; cluster size = 40, t = 4.08, corrected p = .027)
(Figure S2). There were no significant differences between the
MDD present and MDD absent groups. Further breakdown into
simple effects (for each event type separately) demonstrated
that MDD present group versus HC group exhibited a signifi-
cantly increased response in the left superior frontal gyrus
during unexpected reward (MNI coordinates x = —24, y = 52,
z = —7; cluster size = 45, t = 5.34, corrected p = .019), but there
were no differences during expected reward (Figure S3).
Critically, the enhanced response in the LPFC to surprising
reward was observed not only when patients with MDD were
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Figure 3. General psychiatric severity. Neural
response to surprising reward increases as a func-
tion of number of diagnoses. Clusters show positive
(red) and negative (blue) activity for the contrast of
the interaction of number of diagnoses X valence X
expectancy (unexpected reward — expected reward
> unexpected punishment — expected punishment).

Surprising reward

compared with HCs but also when the sample was stratified by
anxiety, ADHD, or ASD. It was present as a function of
depressive, ADHD, and ASD symptoms and also as a function
of the number of diagnoses (Figure 2B, C; see the Supplement
for a full report).

To summarize, we observed enhanced LPFC response to
surprising reward in MDD present group versus HC group as
well as in MDD absent group versus HC group. This enhanced
LPFC response was also observed as a function of depressive,
ADHD, and ASD symptom severity and the number of di-
agnoses (Figure 3). Thus, enhanced LPFC response to sur-
prising reward reflects a transdiagnostic characteristic that is
not restricted to one of the four studied disorders.

Next, we explored the nature of this transdiagnostic effect
using a post hoc factor analysis on all individual item scores
across the multiple symptom questionnaires (see Supplement
for the scree plot and table with factor loadings: Figure S6 and
Table S7). Four factors were identified based on the scree plot
(explained variance: 35.28%). These factors were labeled in-
terest, social interaction, attention and concentration, and
physical distress. We explored the selective contribution of
each of these factors to brain activity in the LPFC cluster from
the surprising reward contrast in the comparison of patients
versus HCs. We illustrate the results of this exploratory anal-
ysis of the four factor scores but do not perform statistics or
report p values (to avoid circular inference). The signal in the
LPFC cluster varied with factor 3 scores (attention and con-
centration) but not with any of the other factor scores

Factor 2 Factor 3

Social interaction

Factor 1
Interest

Attention/concentration Physical distress

(Figure 4). We also performed whole-brain analyses with each
of the factors as a covariate in the model. The significant LPFC
clusters with each factor are presented in Table S8. A voxel-
level threshold of p < .001 uncorrected was applied, with a
cluster-level familywise error correction for multiple compari-
sons of p < .05. There were significant clusters in the sur-
prising reward contrast for factors 2, 3, and 4.

DISCUSSION

This study investigated the generalizability and specificity of
negative learning bias in patients with MDD with psychiatric
comorbidities. Contrary to previous reports, we did not repli-
cate previous findings of reduced learning from reward, nor did
we find evidence of blunted reward activity in the striatum (in
comorbid MDD or in any of the other patient groups). Rather,
patients with MDD exhibited markedly enhanced neural
response to surprising rewards in the bilateral LPFC, specif-
ically the inferior frontal gyrus. Moreover, this effect was not
specific to MDD but rather generalized to patients with anxiety,
ADHD, and/or ASD. In fact, this enhanced neural response was
accounted for by the number of diagnoses, indicating an effect
of general psychiatric severity irrespective of diagnosis.
Increased LPFC response in patients concurs with previous
findings from two meta-analyses that found enhanced PFC
activity in MDD during reward outcome (37,38). It was pro-
posed that this increase in prefrontal activity might be asso-
ciated with the previously observed reduction in striatal

Figure 4. Association between brain responses to
surprising reward and factor scores resulting from
our factor analysis across all participants. We spe-
cifically examined activity within the lateral prefrontal
cortex cluster from the surprising reward contrast in
the comparison of patients (Figure 2A) vs. healthy
control subjects (left: x = —48, y = 35, z = 18, k = 45;
right: x = 46, y = 28, z = 18, k = 102). This lateral
prefrontal cortex cluster is marked with a black
border. Activation in the lateral prefrontal cortex
cluster varied only with factor 3.

Factor 4

Interaction unexpected reward - unexpected punishment

286 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging March 2021; 6:280-289 www.sobp.org/BPCNNI






Biological
. . L . - Psychiatry:
Negative Learning Bias in Depression Revisited CNNI i

response in MDD during reward processing (38). However, the
current lack of a blunted striatal reward response is not
consistent with this account. More targeted region-of-interest
analyses even revealed similarly increased reward-related
signal in the striatum (see Supplement).

Enhanced neural response to surprising reward in psychi-
atric patients may reflect one of various underlying mecha-
nisms. The stronger LPFC response might reflect a
compensatory response corresponding to the recruitment of a
working memory strategy to compensate for a putative un-
derlying striatal reward learning deficit. We argue that the
current learning task is particularly sensitive to the recruitment
of such cortical rule-based strategies for two reasons. First, the
outcome contingencies were deterministic, rendering the use
of a working memory strategy more optimal than an incre-
mental reinforcement learning strategy, which benefits learning
more in the context of probabilistic contingencies (39,40).
Previous literature has indeed observed increased activation in
the LPFC in participants with depression during working
memory tasks where performance in the patients was also
similar to that in the HCs (41-43). Given that performance on
both the reversal task and spatial working memory task (see
Supplement) did not vary with symptom severity, we speculate
that this increase in LPFC response reflects compensatory
upregulation. Future studies might test the hypothesis that
patients with MDD rely more readily on an LPFC working
memory strategy than on a reinforcement learning strategy
using paradigms that are explicitly developed to investigate
biases in the interaction between working memory and rein-
forcement learning strategies (39,40). Second, the task
required the learning and updating of associations between
outcomes and stimulus categories (e.g., bodies) rather than
stimulus exemplars, akin to the type of extradimensional set
shifting measured, for example, using the classic Wisconsin
Card Sorting Task (44). Extradimensional set shifting is well
known to be associated with the LPFC (45-47), and patients
with MDD have been shown to exhibit enhanced LPFC activity
during extradimensional set shifting (48).

An alternative explanation is that patients cannot update their
reward expectation based on positive feedback as well as HCs.
If predictions are generally more negative in patients, then sur-
prisingly good outcomes are relatively more surprising than
surprisingly bad outcomes. The concept of a reward prediction
deficit in MDD is in line with recent work proposing that negative
bias in MDD reflects a pessimistic view of the world and beliefs
about the future (49-52). The authors of this work argue that
patients with MDD have more difficulties in updating their
negative expectation about their own performance after sur-
prising positive feedback. Note that these studies used
performance-contingent feedback, thereby reflecting a pessi-
mistic prediction about the outcome of one’s actions (49,50,53).
In contrast, our study tested participants’ prediction about
noncontingent outcomes (independent of their performance).
Nonetheless, both lines of evidence would support a reward
prediction deficit account; if rewards are less expected in gen-
eral, unexpected rewards will be more surprising.

This account concurs with previous work on prediction
(violation) in healthy people, demonstrating LPFC and medial
PFC responses to surprising rewards (prediction errors) (54,55).

Indeed, the inability to accurately predict rewards has been
proposed as a candidate mechanism for anhedonia in depres-
sion (56). This pessimistic expectation account might be
reconciled with the prefrontal compensatory account if patients
rely more on working memory specifically when inhibiting a prior
punishment prediction and boosting a novel reward association.

To compare our results with those of Robinson et al. (7), we
also examined a selected subsample of patients with MDD
without comorbidity (see Supplement) who, however, also did
not exhibit blunted reward activity. In fact, there was no evi-
dence of reward-related striatal activity in HCs either. A critical
difference between the task used in Robinson et al. (7) and the
current study was the requirement to link outcomes to a
category rather than to an exemplar. Moreover, the fact that
feedback in the current task was not performance dependent
might have further contributed to pushing striatal blood oxygen
level-dependent signals below our detection threshold (57).
Together with the deterministic nature of the contingencies,
these aspects might have led learning to rely more strongly on
prefrontal mechanisms than was the case in Robinson et al. (7)
and other studies using probabilistic tasks (58). Thus, the lack
of a striatal reward learning deficit in the current task might not
generalize to other reward learning tasks that do implicate the
striatum (40,59).

An important aim of the current study was to test the
specificity of neural changes to MDD. Enhanced response to
surprising reward was observed in all disorders and was also
associated with symptom severity in MDD, ASD, and ADHD,
arguing against specificity. Intriguingly, activity in the LPFC
was positively associated with the number of diagnoses, and
when the number of diagnoses was added as a regressor of
interest, the group difference was no longer observed. In
addition, the number of diagnoses was associated with all
symptom-level scores (as measured with the IDS, ASI, CAARS,
and AQ-50) (Table S6) and did not differ between the MDD
present and MDD absent groups.

The next question we asked was whether this trans-
diagnostic effect might reflect a disproportionate contribution
of a specific subset of transdiagnostic symptoms. Factor
analysis of the items from the 4 questionnaires measuring
symptom severity of depression, anxiety sensitivity, ADHD,
and ASD across participants revealed the four factors: interest,
social interaction, attention and concentration, and physical
distress. Although all the symptoms of social interaction,
attention and concentration, and physical distress were
involved, there was some qualitative indication that impaired
attention may play a bigger role than the others (yet this re-
mains an exploratory result). However, it might be noted that
this analysis will reveal only those factors that are measured
using our questionnaires. The current finding does not speak
to the exclusion of other (unmeasured) symptom dimensions
such as motor action planning and visual perception. Taken
together, these findings likely indicate enhanced LPFC
response to surprising reward as a candidate transdiagnostic
marker of psychiatric conditions, possibly reflecting impaired
attention and concentration. Previous work has suggested that
comorbidity between different psychiatric disorders could
indicate that these disorders at least partially share underlying
mechanisms (60). Recent work suggests that negative memory
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bias could be an example of a transdiagnostic mechanism of
psychopathology (26). The current results suggest that the
neural response to surprising reward in the LPFC may be a
novel candidate mechanism that could provide a trans-
diagnostic index of psychiatric severity.

A limitation of this study was the use of psychotropic
medication. Many of the patients used not only selective se-
rotonin reuptake inhibitors but also benzodiazepines, antipsy-
chotics, or opioids. These can have a considerable effect on
both behavioral and neural responses (61,62). We assessed
the effect of selective serotonin reuptake inhibitor use by
comparing patients using at least one selective serotonin re-
uptake inhibitor with patients using no medication or other
medication and did not find a difference in LPFC response
among these different groups. However, we cannot exclude
the possible role of other medications (e.g., benzodiazepines,
antipsychotics, psychostimulants). Future studies should
include larger samples of patients using different types of
psychotropic medications so that the effects of these medi-
cations can be investigated in more detail.

To conclude, we investigated negative learning bias in
patients with depression with comorbid (nonpsychotic) psy-
chiatric disorders and observed no evidence of reduced
reward learning or of blunted reward processing. Conversely,
we observed enhanced neural response to surprising reward
in the LPFC in patients. This effect was not specific to MDD
but rather was generalized to other diagnoses and also
scaled with symptom severity. Importantly, it was also
associated with the number of diagnoses—a surface mea-
sure of comorbidity severity—and the severity of impair-
ments of attention and concentration, as measured with a
dimensional approach. Enhanced response to surprising
reward in the LPFC thus provides a candidate neural index of
psychiatric severity.
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