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ABSTRACT 
 
While a substantial body of work has shown that cognitive effort is aversive and costly, a separate 

line of research on intrinsic motivation suggests that people spontaneously seek challenging tasks. 

According to one prominent account of intrinsic motivation, the Learning Progress Motivation 

theory, the preference for difficult tasks reflects the dynamic range that these tasks yield for 

minimization of performance accuracy prediction errors (Oudeyer, Kaplan & Hafner, 2007). Here 

we test this hypothesis, by asking whether greater engagement with intermediately difficult tasks, 

indexed by subjective ratings and objective pupil measurements, is a function of trial-wise changes 

in performance prediction error. In a novel paradigm, we determined each individual’s capacity 

for task performance and used difficulty levels that are too low, intermediately challenging or high 

for that individual. We demonstrated that intermediately challenging tasks resulted in greater liking 

and engagement scores compared with easy tasks. Task-evoked and baseline pupil size tracked 

objective task difficulty, where challenging tasks were associated with smaller baseline and greater 

phasic pupil responses than easy tasks. Most importantly, pupil responses were predicted by trial-

to-trial changes in expected accuracy, performance prediction error magnitude and changes in 

prediction errors (learning progress), whereas smaller baseline pupil responses also predicted 

greater subjective engagement scores. Together, these results suggest that what is underlying the 

link between task engagement and intermediate tasks might be the dynamic range that these tasks 

yield for minimization of performance accuracy prediction errors.   

 
Keywords: Cognitive effort, pupil, expected accuracy, prediction error, learning progress 
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Introduction 

According to the myth, Sisyphus was punished by the Gods to roll a boulder up a hill for 

eternity. It was the effort of his task that was considered a punishment for him. Although it is 

intuitive to assume that effort is aversive, people voluntarily engage throughout their lifespan in 

effortful tasks that allow them to acquire challenging hobbies, master expertise and be successful 

in adult life. Take video games for an example. Anyone who has played video games would agree 

that once they master a game level, they like to move onto a harder one. Most gamers would not 

voluntarily choose to play an easier level in order to avoid the effort. In fact, previous research 

(Baranes, Oudeyer & Gottlieb, 2014) has shown that when people are given the option, they 

gradually increase the difficulty of a video game across time. In these games, participants keep 

their task accuracy around 50% on average, even if they can choose to play the easier task level 

the entire time. An important question, then, concerns what underlies the preference for specific 

effortful tasks while others are deemed frustrating. In line with the theories on intrinsic motivation 

(Gottlieb & Oudeyer, 2018) as well as the recent proposal (Agrawal et al., 2021) suggesting that 

the utility of mental tasks increase as a function of the information they provide, we test the 

hypothesis that effortful tasks are preferred if they yield an opportunity for reduction of 

information uncertainty about performance success. 

Influential theories of effort assume that cognitive effort holds an intrinsic cost (Shenhav, 

Botvinick & Cohen, 2013). As such, cognitive effort discounting and selection paradigms 

(Westbrook, Kester & Braver, 2013) show that participants forego reward to avoid the 

performance of challenging tasks. However, a separate line of research on motivation suggests that 

humans can be intrinsically motivated for optimal challenge. For example, intrinsically motivating 

activities that are intermediately challenging given one’s capacity are known to induce a state of 

’flow’ (Csikszentmihalyi, 1990). In these activities, people report disliking tasks that are too easy 

or too difficult, but greater engagement with and liking of those tasks for which accuracy is around 

50%. Moreover, neural networks recruited during the experience of flow correspond to regions 

that are commonly associated with reward receipt (Ulrich, Keller & Grön, 2016).  

One prominent account that explains the mechanism underlying intrinsic motivation is 

Learning Progress Motivation theory (Oudeyer, Kaplan & Hafner, 2007). This account suggests 

that the motivational value of a task comes from its potential for performance improvement. Thus 

performance improvement might be proposed to correspond to the degree to which actual 
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performance accuracy differs from the expected level of performance accuracy, that is, a 

performance accuracy prediction error, as well as its derivative (i.e. its change), which corresponds 

to the degree to which this performance accuracy prediction error is reduced across successive 

trials (Oudeyer, Gottlieb & Lopes, 2016).  

Imagine three different types of task a researcher might need to perform for work. Say, one 

is a task they know how to execute by heart, such as subject data entry. They know they will 

perform this job with almost perfect accuracy, and they will succeed in doing so. This means their 

performance prediction errors for this task will be close to zero and will not change over time. 

Next, consider another task that is impossible for them to perform accurately, such as 

troubleshooting an fMRI machine. They know they will not be able to perform this task 

successfully, because they have no engineering background. So, their prediction error again is 

close to zero and stays flat. However, now consider a third job: a novel data analysis method that 

is intermediately challenging given their prior experience and associated with uncertainty about 

performance accuracy. They will fail once or twice, which will generate a negative performance 

prediction error given their expectation that they might well be correct. Upon persistence, they 

might succeed later on, which will boost their expectations about their own performance success, 

slowly reducing the difference between what they think they can do and what they actually can do.  

According to Learning Progress Motivation theory, these intermediately challenging tasks 

are exactly the tasks in which internally motivated agents must invest effort. In a simulated 

experiment, researchers showed that artificial agents spontaneously spend more time exploring 

tasks that provide an opportunity for minimizing prediction errors and avoid tasks that yield no 

prediction error change (Gottlieb & Oudeyer, 2018). Similarly, human infants have been shown to 

attend to intermediately predictable auditory and visual stimuli (Kidd, Piantadosi & Aslin, 2014; 

Kidd, Piantadosi & Aslin, 2012). Based on this account, Sisyphus’ punishment might have been 

reduced to the extent he experienced room for improving his skills in moving that boulder up the 

hill. In the current study, we test the hypothesis that intermediately challenging tasks are perceived 

as more engaging, as indexed both by subjective report of engagement as well as by trial-by-trial 

objective indices of pupil dilation, which has been well established to be associated with task 

engagement (Aston-Jones & Cohen, 2005). Furthermore, based on the Learning Progress 

Motivation hypothesis, we anticipate that the trial-by-trial index of pupil dilation is predicted by 
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performance accuracy prediction error, as well as by its derivative, that is the change in 

performance accuracy prediction error.  

To this end, we leverage a paradigm that is commonly used to induce a state of flow and 

engagement rather than avoidance of cognitive effort. After determining each individual’s 

maximum cognitive capacity, participants performed 4 blocks of effortful tasks in which they 

scored 25, 50, 75 and 100% correct. After performance of this second effort exposure phase, 

participants completed self-report questions about their subjective liking, perceived ability and 

engagement during these different task blocks. We predicted that intermediately challenging tasks 

would be perceived as more engaging than easy or difficult tasks, yielding an inverted-U 

relationship between task engagement and task accuracy. We also predicted that subjective 

engagement scores would be predicted by both the average size of the performance accuracy 

prediction error as well as the average derivative (or change) of the performance accuracy 

prediction error across participants, with greater reductions in prediction error being associated 

with greater subjective engagement. 

In addition, we acquired objective measures of engagement: the pupillary response during 

the task anticipation epoch of trials in the effort exposure phase. The pupil response has often been 

argued to reflect activity of the locus coeruleus (LC) (Murphy et al., 2014; Gilzenrat et al., 2010), 

the origin of noradrenaline, that is the neuromodulator most commonly implicated in task 

engagement (Aston-Jones & Cohen, 2005). Generally, an intermediate level of LC activity is 

considered optimal for task engagement, with both insufficient (boredom) and excessive arousal 

(stress) leading to impaired performance and reduced task engagement (Yerkes-Dodson curve 

(Yerkes & Dodson, 1908)). In fact, LC activity, and with it, the pupil response, has been shown to 

exhibit two modes of function: phasic and tonic. Phasic firing typically occurs in response to task-

relevant events during epochs of high performance, and it is commonly characterized by large 

task-evoked dilations against a background of small baseline pupil size. This phasic mode is often 

contrasted with a tonic mode of pupil activity, which is associated with elevated baseline firing 

rate, absence of phasic responses, and degraded task performance (Aston-Jones et al., 1994; Aston-

Jones & Cohen, 2005). By analogy, baseline pupil size was shown to be the highest and task-

evoked dilations the lowest when participants decided to disengage from an effortful task 

(Gilzenrat et al., 2010) and this pattern reversed when participants reengaged with the task. 

Critically, in this prior work, decisions to engage were also always accompanied by higher 
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accuracy, because participants were instructed to maximize accuracy-dependent reward. 

Therefore, participants chose to disengage from difficult tasks when their accuracy decreased too 

much.  

Unlike this previous work on pupil dilation, the current task is predicted to dissociate task 

accuracy and reported task engagement, with participants putatively reporting greater subjective 

task engagement for tasks on which they perform more poorly than for tasks on which they perform 

perfectly. Therefore, our paradigm provides a novel tool not only for testing the Learning Progress 

Motivation hypothesis of motivation (Oudeyer, Kaplan & Lopes, 2007), but also for investigating 

more directly the putative selective link between pupil dilation and task engagement. Indeed, 

previously observed effects of task engagement on pupil response were often confounded by task 

difficulty (Beatty, 1982; see van der Wel & van Steenbergen, 2018 for a review). The present study 

addresses this confound.  

Thus, two straightforward, dissociable predictions are tested: First, during the cue period, 

the phasic pupil mode will track participants’ reported engagement, thus exhibiting a quadratic 

trend across task difficulty. Second, on a trial-by-trial basis, phasic pupil size will track the 

magnitude of the previous trial prediction error as well as previous prediction error change. 
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2. Methods  

2.1. Participants  

Forty English-speaking participants were recruited from the Radboud University 

participant pool (SONA Systems). All had normal or corrected-to-normal vision. They received a 

monetary reward (€10.00) for their participation and provided written informed consent prior to 

the experiment. Each participant was tested individually in a laboratory session lasting 

approximately 75 minutes. Participants were removed from the analyses if they had not completed 

the study (N = 2), or if no reliable pupil calibration accuracy could be obtained during the 

calibration phases (N = 2). The final sample size of 36 (ages 19-64; M = 24; SD = 9.6; 20 women 

see Supplementary Methods 1 for the age distribution and Supplementary Result 3 for analyses of 

a more homogeneous age-group) allowed us to detect an effect size of Cohen’s d ≥ 0.05 with 80% 

power and alpha of 0.05 (Cohen’s 1992).  

 

2.2. Stimuli and Data Acquisition 

During the computerized task portion of the experiment, participants were seated in a 

height-adjustable chair in front of a 23-inch monitor set to a resolution of 1920-1080 pixels, in a 

constant dimly lit room. Participants were instructed to keep their heads still and stabilized, rested 

in a chinrest positioned 50 centimetres away from the screen. All stimuli were delivered and 

controlled via the software Matlab (version 2016b) using Psychtoolbox library. Pupil responses 

were recorded using Eyelink 1000 eye tracker. Stimuli consisted of arithmetic summations of 

diverse difficulty levels, manipulated by summation length. Experimental scripts can be found on 

the author’s personal Github page (https://github.com/zceydas/OptimalEffort_Pupillometry). 

 

2.3. Procedure  

2.3.1.The task 

The participants started with a computerized task, which consisted of solving arithmetic 

summations varying in difficulty (e.g., 17 + 2) There were two different phases: a capacity phase 

to determine the four Task Difficulty levels, and a performance phase where those conditions are 

performed. Both will be explained in detail in the following sections. In both phases, participants 

had to solve summations by giving a free response within a time period of 18 seconds. They were 

instructed to answer as many trials correctly as possible, and to answer as soon as they knew the 
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correct answer. The answer had to be entered digit by digit using numeric keys on the keyboard. 

Mistakes could be corrected using a “Backspace” button. Their input was immediately displayed 

on the screen. All summations were presented in a row, with accurate feedback (correct, incorrect 

or too late) provided immediately afterwards.  

 

2.3.2.Capacity phase 

The capacity phase served to determine the participants’ level of skill. Each difficulty level 

consisted of 5 summation trials. Starting at the easiest possible level, the difficulty level of the 

summations was continuously increased by one level. Specifically, a level-up adjustment occurred 

when the participant correctly answered at least one question of the same difficulty level. This 

procedure was continued until the participant scored 0% correct at all 5 summations of a certain 

difficulty level. When the capacity phase was finished, a sigmoid function was fitted to the 

resulting datapoints in order to estimate four Task Difficulty levels based on participant’s own 

accuracy. The ‘Easy’ condition was kept the same across all individuals and yielded the following 

formula: X + X. All participants scored 100% correctly on this task condition. The subsequent task 

levels yielded lower accuracy: At ‘Intermediate1’ condition accuracy was 75%, at ‘Intermediate2’ 

condition accuracy was 50%, at ‘Difficult’ level accuracy was 25%. These individually determined 

task conditions were used as the upcoming four Task Difficulty levels in the following 

performance phase.   

 

2.3.3.Performance phase 

In the performance phase, the participant completed two blocks per Task Difficulty in a 

pseudo-randomized order (Figure 1). Specifically, each Task Difficulty block was randomized in 

the first half of the performance phase (e.g. “C-A-D-B”), and the same order was repeated for the 

second half (“C-A-D-B”). Each block consists of eight trials, so that the entire performance phase 

comprised sixty four trials in total. Prior to each block, participants underwent a standard nine-

point calibration procedure of gazing shortly at nine markers displayed on the screen sequentially, 

to ensure pupil capture calibration accuracy was kept similar across task blocks. At the beginning 

of each trial, a letter cue (A, P, Q, Y) was presented to indicate the upcoming task condition. These 

cue-task condition pairings were counterbalanced across participants in such way that each letter 

had a similar likelihood of being paired with a task condition across participants. This cue period 
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lasted three seconds, to capture the entire response profile of the pupil. The cue was followed by a 

fixation cross of one second. Following the fixation cross, the participant solved a summation trial, 

the difficulty of which depended on the current Task Difficulty block. All cues, fixation crosses 

and summations were presented in red. Feedback consisted of a blue check mark for correct, an 

orangish cross for incorrect and an orange clock for too slow. All stimuli were presented against a 

green background. Stimuli and background colours were selected to keep constant the screen 

luminance (0.3*R + 0.59*G + 0.11*B = ~110 cd/m2) as well as the contrast of the stimuli against 

the background during the whole task, to rule out any influence of screen luminance on pupil 

responses. Lastly, a final fixation cross appeared on the screen. Depending on response time (RT) 

in the summation period, the duration of this last fixation cross was adjusted, so that the total trial 

duration was always eighteen seconds. After each block, the participants provided a subjective 

flow rating, see below.  
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Figure 1. Illustration of one trial structure during the Performance Phase. The fixation cross preceding the 

cue presentation was 3 seconds. The cue was presented for 3 seconds and signalled that the upcoming task 

performance in the Performance Phase. In the Capacity Phase, there was no cue. After the presentation of 

a fixation cross for 1 second, participants solved the arithmetic summation question. The deadline for this 

epoch was 18 seconds. Upon response, participants received accurate feedback for 3 seconds. The final 

fixation cross duration was variable depending on RT only in the Performance Phase. During the Capacity 

phase, the final fixation duration was randomized with a mean of 2 seconds.  
 
 
2.3.4.Subjective flow questionnaire  

Subjective flow (flow index) was indexed by nine visual analogue ratings. The participant 

could range their response by moving the mouse on a horizontal line (10 cm in length) that had no 

anchors, except for the middle and endpoints. The answers were rated on a scale from 0 to 1. For 

8 items, which measured the control component of flow, the endpoints were labelled agree and 

disagree. According to flow literature (Csikszentmihalyi, 1990; Ulrich et al., 2014; Ulrich, Keller 

& Grön, 2016), these items were used to monitor involvement, enjoyment, perceived fit between 

skills and task demands, and feeling of control with respect to each difficulty level (Table 1). A 

9th statement assessed participants’ subjective sense of time (Keller & Bless, 2008; Ulrich et al, 

2014).   

 

Q1. I would love to solve math questions of that kind 

Q2. I was strongly involved in the task 

Q3. I was thrilled 

Q4. The task was boring 

Q5. I had the necessary skills to solve the calculations successfully 

Q6. Task demands were well matched to my ability 

Q7. During the task all thoughts on task-irrelevant issues that I am personally concerned 

with were extinguished 

Q8. During the task my consciousness was completely focused on solving the math 

calculations 

Q9. The time passed really quickly  

 

Table 1. Flow questionnaire items. 
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2.4.Statistical analyses 

All statistical analyses were conducted in Rstudio (Version 1.3.1093). The analyses 

included analysis of variance (ANOVA) and Bayesian modelling. For the ANOVA, we used the 

R package ez. Bayesian models were created in Stan and assessed with brms package (Bürkner, 

2017). For ANOVA, alpha level of 0.05 was used for all analyses. For Bayesian models, credible 

intervals with 95% probability were computed and parameters that did not include 0 within their 

credible intervals were considered significant in predicting the outcome variable.  

 

2.4.1.Behavioural data analysis 

2.4.1.1.Response time and accuracy rate 

To validate the paradigm, mean accuracy rates (percentage correct trials) and mean 

response times  for correct trials (seconds) from the performance phase were submitted to a one-

way repeated measures ANOVA using Task Difficulty (easy, intermediate1, intermediate2, 

difficult) as a repeated measure. To assess simple effects of Task Difficulty, pairwise t-test 

analyses were executed with a Bonferroni correction. If the assumption of sphericity was not met, 

a Greenhouse-Geisser correction was applied (Field, 2009).  

 

2.4.1.2.Flow measurement analysis 

To address whether participants’ flow ratings differ with Task Difficulty, we analysed the 

total flow score as well as four component scores (Supplementary Results 2): ‘ability’ (item 5 and 

6), ‘involvement (item, 2, 7 and 8), ‘liking’ (item 1, 3 and 4) and ‘time’ (item 9). Individual ratings 

were averaged across all trials from each task condition, for total flow as well as for each of the 

four component scores. Total flow and component scores were submitted to a repeated measures 

ANOVA with Task Difficulty level as a within-subject factor. Simple effects were investigated 

using Bonferroni corrected paired t-tests. In case of non-sphericity, a Greenhouse-Geisser correct 

was applied.  

 

2.4.1.3.Model parameter analysis 

To confirm that expected accuracy, performance accuracy prediction error (PE) and 

performance accuracy prediction error change (DPE) vary with Task Difficulty, we computed the 
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following latent parameters: expected accuracy was computed as the cumulative sum of the 

probability of a correct answer on each trial (Nagase et al., 2018; Sayali & Badre, 2021), and 

updated across the two sessions for each Task Difficulty separately. PE was computed by 

subtracting expected accuracy from the corresponding accuracy value (1 for correct, 0 for 

incorrect; Figure 2). Finally, DPE reflects the difference between PE on two successive trials and 

indexes performance progress. These parameters were averaged across all trials per Task Difficulty 

level for every participant. For these validation analyses, averages of these parameters were 

submitted to a repeated measures ANOVA with Task Difficulty as a within-subject factor. 

Significant effects were followed by pairwise Bonferroni corrected t-tests. In case of violation of 

the sphericity assumption, a Greenhouse-Geisser correction was applied (Field, 2009). 

 

  

 
Figure 2. Exemplary progress of expected accuracy and prediction error parameters in relation to trial-by-

trial changes in accuracy across all 16 trials (across two blocks) for the Difficult Task of one participant. 

 

2.4.2.Pupillary data analysis   

As in previous literature, pupil size, reported as pupil diameter, was registered during 

fixation, cue and feedback periods with a sampling rate of 500Hz. The obtained raw pupillometry 

data were exported and pre-processed in Matlab before calculating a trial-by-trial baseline and 
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task-evoked pupillary response (TEPR) during letter cue presentation. First, across all task epochs 

(1st fixation, cue presentation, 2nd fixation and performance feedback epochs) we excluded 12.1% 

of the trials from further analysis based on our exclusion criterion of more than 40% NaNs per trial 

(M = 7.72%, SD = 5.96%). These reflected blinking. In the remainder of the data, missing data and 

eye blinks were detected (M = 5.8% of overall data, SD = 4.48%), removed and smoothed by 

convolution with a 11 ms hanning-window. The smoothed pupil recordings were corrected using 

cubic spline interpolation. After interpolation, the residual pupil time series were bandpass filtered 

using a 0.02-4 Hz third-order Butterworth filter, to decrease noise and remove slow drifts (Knapen 

et al. 2016). Next, we checked for effects of Task Difficulty on gaze drift in x- and y-direction 

with a linear mixed effects model. This gaze drift control analysis confirmed that the frequency of 

the saccades in both directions did not change as a function of Task Difficulty (GazeDriftx: 

(F(3,34.33) = 0.89, p = .35) ; GazeDriftY: (F(1,34.32) = 0.99, p=.32)). Therefore, the effect of 

saccades from pupil responses were not removed. Subsequently, the time series were normalized 

within each block by z-scoring, in order to make comparisons between Task Difficulty blocks and 

to correct for individual differences in pupil diameter (de Gee, Knapen & Donner, 2014; Nassar et 

al., 2012, Urai, Braun & Donner, 2017). Time courses of pupil size changes before and after cue 

presentation are presented in Figure 3 to demonstrate the typical pupil response without baseline 

correction. Trial-by-trial baseline pupil diameter was calculated as the average unfiltered pupil 

diameter during the 200 ms period before cue onset. To control for variability in overall pupil size 

due to non-task related processes across trials within the same block, a baseline correction was 

applied to the standardized pupil units on a trial-by-trial basis by subtracting the preceding baseline 

pupil diameter (Eckstein, Starr & Bunge, 2019; Hershman & Henik, 2019) from the letter cue 

period. The final trial-by-trial TEPR was calculated as the maximum pupil diameter observed 

between a period of 1000 ms and 3000 ms after cue onset (Gilzenrat et al., 2010).  

The pre-processed data were transported to Rstudio.  
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Figure 3 Average time course of (baseline uncorrected) pupil size across all task conditions from one and 

half seconds before and after cue onset.  

 

The trial-by-trial cue and baseline data were analysed using a Bayesian mixed effects 

regression model (brms on R). The model predictors included the following covariates of interest: 

Task Difficulty and the latent model parameters PE, ΔPE and expected accuracy; as well as 

covariates of no-interest: trial number and task order, where trial number refers to the trial number 

within a task block (1 through 8) and task order refers to the order in which a task block is presented 

to the participant among other tasks in the experiment (1 through 8).  

 

2.4.3.Pupillary – behaviour analysis 

All parameters were estimated using Monte Carlo (MHC) with 5 chains of 2000 samples 

each. Significant predictors are determined by looking at the posterior distribution; a distribution 

not containing zero indicates a significant predictor. Participants’ age, task order and trial number 

were included as nuisance variables in all relevant mixed effects models.  

 

2.4.3.1.Effect of task related factors on pupil size 
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To probe the effect of task-related factors on pupil size, we separately examined the influence of 

expected accuracy, PE and DPE on Baseline and TEPR on a trial-by-trial basis. We used a Bayesian 

model comparison analysis of the non-averaged data, where subject-level parameters are drawn 

from group-level distributions. The models included the baseline and TEPR pupil size as 

dependent variables, with fixed effects and random slopes for expected accuracy, PE and DPE, 

Task Difficulty as well as nuisance variables trial number, task order and subject age, where 

subject number was entered as random effect (final model formula notation = (PupilSize ~ PE + 

DPE + ExpectedAccuracy + TaskDifficulty + TrialNo + TaskOrder + Age + (1 + PE + DPE + 

ExpectedAccuracy + TaskDifficulty + TrialNo + TaskOrder + Age || SubjectNumber, data=d, 

REML=F)). In addition, the model predicting TEPR also included the baseline pupil size in order 

to control for the effects of baseline correction in calculating TEPR.  

Prior to each model fitting, predictor multicollinearity has been assessed by computing 

variance inflation factor (VIF), which measures the inflation of a regression coefficient due to 

collinearity between predictors (Bruce & Bruce, 2017; James et al., 2014). For example, a VIF 

above 5 is considered problematic and predictors that yield problematic VIF scores are considered 

redundant. For the model predicting baseline pupil size, variance inflation factor (VIF) index for 

all predictors was low (VIFPE = 2.67, VIFDPE = 2.79, VIFExpectedAccuracy = 2.11, VIFTaskDifficulty = 2.07, 

VIFTaskOrder = 1.07,  VIFTrialNo = 1.05, VIFAge = 1.01), justifying the inclusion of these terms in the 

same model.  For the model predicting TEPR, variance inflation factor (VIF) index for all 

predictors was also low (VIFBaseline = 1.11, VIFPE = 1.08, VIFDPE = 1.06, VIFExpectedAccuracy = 2.12, 

VIFTaskDifficulty = 2.08, VIFTaskOrder = 1.07, VIFTrialNo = 1.05,  VIFAge = 1.00). 

 

2.4.3.2.Motivational relevance of pupil size 

To test the motivational relevance of pupil size, we asked whether flow scores can be 

predicted by TEPR and baseline pupil size. To this end, we adopted a Bayesian mixed effects 

regression model approach to assess the non-averaged data. The models included total flow index 

as the dependent variable, with fixed effects as well as random slopes for baseline pupil size, 

TEPR, Task Difficulty and model parameters, expected accuracy, PE and DPE as well as nuisance 

variables trial number, task order and subject age, where subject number was entered as random 

effect (formula notation = (Flow ~ TEPR + Baseline  + PE + DPE + ExpectedAccuracy + 

TaskDifficulty + TaskOrder + Age + (1 + TEPR + Baseline + PE + DPE + ExpectedAccuracy + 
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TaskDifficulty + TaskOrder + Age || SubjectNumber, data=d, REML=F)). Variance inflation 

factor (VIF) index for all predictors was low (VIFTEPR = 2.68, VIFBaseline = 2.76, VIFPE = 3.02, 

VIFDPE = 2.94, VIFExpectedAccuracy = 1.02, VIFTaskDifficulty = 1.03, VIFTaskOrder = 1.00, VIFAge = 1.00), 

justifying the inclusion of these terms in the same model.  

 

2.4.3.3.Behavioural relevance of pupil size 

To test the behavioural relevance of pupil size, we assessed whether task performance can 

be predicted by TEPR, again using a Bayesian mixed effects regression model of the non-averaged 

data. The two separate models included current trial accuracy and RT as dependent variables, with 

fixed effects as well as random slopes for baseline pupil size, TEPR, Task Difficulty and model 

parameters, PE, DPE, expected accuracy and nuisance variables trial number, task order and 

subject age, where subject number was entered as random effect (formula notation = 

(TaskPerformance ~ Baseline + TEPR + PE + DPE + ExpectedAccuracy + TaskDifficulty + 

TaskOrder + TrialNo + Age + (1 + Baseline + TEPR + PE + DPE + ExpectedAccuracy + 

TaskDifficulty + TaskOrder + TrialNo + Age || SubjectNumber, data=d, REML=F)).  

For the model predicting accuracy, the variance inflation factor (VIF) index for all 

predictors was low (VIFBaseline = 4.61, VIFTEPR = 4.60, VIFPE = 1.13, VIFDPE = 1.11, 

VIFExpectedAccuracy = 1.46, VIFTaskDifficulty = 1.44, VIFTaskOrder = 1.07, VIFTrialNo = 1.06, VIFAge = 1.00), 

justifying the inclusion of these terms in the same model.  For the model predicting correct RT, 

the variance inflation factor (VIF) indices for pupil predictors were high (VIFBaseline = 3.67, 

VIFTEPR = 3.99, VIFPE = 1.18, VIFDPE = 1.09, VIFExpectedAccuracy = 2.43, VIFTaskDifficulty = 2.51, 

VIFTaskOrder = 1.13, VIFTrialNo = 1.11, VIFAge = 1.01), permitting the inclusion of all predictors in 

predicting correct RTs.  
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3. Results 
 
3.1. Effect of Task Difficulty on task performance  

Confirming our experimental manipulation, accuracy rate significantly decreased with 

Task Difficulty (F(3,105) = 106.639, p < .001) (Figure 3A). Accuracy at each effort condition was 

significantly different from the others (all ps<0.001). 

Similarly, the time it took to respond correctly increased with Task Difficulty 

(F(2.267,79.335) = 755.848, p < .001) (Figure 3B). Average RT at each effort condition was 

significantly different from the others (all ps<0.001). 

 

 
Figure 4. Probability density plots for A) accuracy rate, B) response time (RT) across task condition. The 

dots display each participant’s mean accuracy rate and correct RT. Circled dots stand for group averages.  

 
3.2. Effect of Task Difficulty on subjective flow scores 

Although task performance declined monotonically with Task Difficulty, subjective 

engagement as indexed by the flow questionnaire increased with Task Difficulty. The flow index 

significantly differed across Task Difficulty (F(1.686,140) = 19.186, p < .001) (Figure 5). Both 

intermediate difficulty levels yielded greater flow scores compared with the Easy level (both 

ps<0.001) and Easy yielded greater flow scores compared with the Difficult level (p<0.001). No 

significant effects differences were found between Intermediate1 and Intermediate2 (p = 1.000), 

Intermediate1 and Difficult (p = 0.412, nor Intermediate2 and Difficult (p = 1.000), suggesting 

that the subjective experience of flow plateaued at the intermediate Task Difficulty levels. A closer 
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look into the subcomponents of the flow inventory showed that task involvement and liking 

increased with Task Difficulty (see Supplementary Results 1), while perceived task ability 

decreased, indicating that task engagement, as indexed by the subjective experience of flow, 

dissociated from that of task ability.  

 

 
Figure 5. Raincloud plot for average flow scores across Task Difficulty.  
 
 
3.3. Effects of Task Difficulty on latent model parameters: expected accuracy and prediction 

error 

Average expected accuracy (Figure 6) declined significantly with increasing Task 

Difficulty (F(3,105) = 84.008, p < 0.001) where Easy yielded significantly higher scores than 

Intermediate1 (p < 0.001), Intermediate2 (p < 0.001), and Difficult (p < 0.001). Moreover, average 

expected accuracy was also significantly higher in Intermediate1 vs Difficult (p < 0.001), and 

Intermediate2 vs Difficult (p = 0.011). No significant difference was observed between 

Intermediate1 vs Intermediate2 (p = 0.180). 

Conversely, average prediction error (PE) magnitude differed significantly as a function of 

Task Difficulty (F(2.517,88.095) = 4.862, p = 0.003), but plateaued at the intermediate difficulty 

levels (Figure 6). Both Intermediate Task Difficulty levels yielded greater PE compared with Easy 

(Intermediate1: p<001; Intermediate2: p=0.024), but there was no difference between intermediate 

levels and Difficult or Easy vs Difficult (Easy vs. Difficult, p = 0.169; Intermediate1 vs 
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Intermediate2, p = 1.000); Intermediate1 vs Difficult, p = 0.915; Intermediate2 vs Difficult, p = 

1.000).  

Finally, DPE increased with increasing Task Difficulty (F(3,105) = 27.938, p < 0.001) 

(Figure 5C), also reaching a plateau at intermediate levels: pairwise contrasts were significant 

between Easy versus both Intermediate Task Difficulty (both, ps < 0.001), and versus Difficult ( p 

< 0.001), but with no significant differences between Intermediate1 vs Intermediate2 (p = 0.790), 

Intermediate1 vs Difficult (p = 0.123), or Intermediate2 vs. Difficult (p = 1.000).   

 

 
Figure 6. Raincloud plot for A) prediction error (PE), B) expected accuracy, and C) prediction error 

difference (DPE). The dots display each participant’s mean PE, expected accuracy, and DPE.  

 
 
3.4. Effects of task-related factors on pupil size  

 To assess which (trial-by-trial latent) processes/factors contribute to trial-by-trial changes 

in baseline and TEPR, we ran a mixed effects model with predictors of interest, Task Difficulty, 

expected accuracy, PE and DPE and the nuisance regressors, trial number, task order and subject 

age.  

 Baseline pupil size on the current trial decreased with PE (B = -0.56, CI [-0.65, -0.48]), 

DPE (B = -0.11, CI [-0.17, -0.05]), expected accuracy (B = -0.32, CI [-0.47, -0.17]) and Task 

Difficulty (B = -0.15, CI [-0.18, -0.11]), indicating that smaller baseline pupil size was associated 

with greater prediction error, learning progress, expected accuracy and task difficulty (Figure 7A, 

8A). 

 On the other hand, pupil size during the cue period  (TEPR) was largely predicted by the 

baseline pupil size. TEPR on the current trial increased with smaller baseline pupil size (B = -0.88, 

CI [-0.91, -0.85]), greater expected accuracy (B = 0.17, CI [0.09, 0.26]) and easier task blocks 
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(Task Difficulty: (B = -0.12, CI [-0.14, -0.10])). The effect of PE and DPE were not significant 

(PE (B = -0.02, CI [-0.06, 0.02]), DPE (B = -0.01, CI [-0.04, 0.02]) In other words, phasic pupil 

response showed an inverse relationship with the baseline pupil size and was greater when the 

expected accuracy of the upcoming trial was higher (Figure 7B, 8B). 

These results indicate that baseline pupil size was smaller with increasing expected 

accuracy, being better than expected and showing greater performance improvements and smaller 

baseline pupil sizes predicted greater phasic pupil response, displaying an inverse relationship.  

 

 
Figure 7. A) Average Baseline pupil size across Task Difficulty. B) Average TEPR across Task Difficulty. 
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Figure 8. Densities of model parameter estimates. A) Model parameter densities for predicting Baseline 

pupil size. B) Model parameter densities for predicting TEPR. C) Model parameter densities for predicting 

flow scores. D) Model parameter densities for predicting accuracy. D) Model parameter densities for 

predicting Correct RTs. 

 

3.5. Motivational relevance of pupil size 

 Next, we assessed the motivational relevance of pupil size by testing whether pupil size 

predicts subjective flow scores. Note that flow questionnaire responses were collected at the end 

of each task block and not on a trial-by-trial basis. Accordingly, the following model did not 

include the nuisance regressor trial number. The full model included the predictors of interest, 

TEPR, baseline pupil size, PE, DPE, expected accuracy, Task Difficulty and the nuisance regressor 

task order and subject age.  

The model results (Figure 8C) showed that Baseline pupil size and Task Difficulty were 

significant predictors of subjective flow scores. Participants reported greater flow scores following 

trials with smaller baseline pupil size (B = -0.32, CI [-0.47, -0.16]) and greater Task Difficulty (B 

= 0.30, CI [0.08, 0.57]). The effect of other predictors were not significant (TEPR (B = -0.16, CI 

[-0.31, 0.00]), PE (B = -0.02, CI [-0.14, 0.07]), DPE (B = 0.06, CI [-0.03, 0.13]); expected accuracy 
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(B = -0.20, CI [-1.29, 0.84])) indicating that greater subjective engagement was associated with 

smaller baseline pupil size and greater task difficulty.  

 
3.6. Behavioural relevance of pupil size 

 Finally, we assessed the behavioural relevance of pupil size by testing the influence of 

pupil size on upcoming task accuracy and correct trial RTs. This model included the predictors of 

interest TEPR, baseline pupil size, PE, DPE, expected accuracy and Task Difficulty and the 

nuisance regressors task order, trial number and subject age.  

The model results predicting accuracy (Figure 8D) showed that the significant predictors 

of trial-by-trial accuracy were baseline pupil size (B = 0.10, CI [0.02, 0.17]), PE: B = 0.07, CI 

[0.01, 0.13], expected accuracy: B = 0.20, CI [0.07, 0.33]) and Task Difficulty (B = -0.12, CI [-

0.15, -0.09]), while the effect of remaining predictors were not significant (TEPR: B = 0.07, CI [-

0.00, 0.14]; DPE (B = 0.04, CI [-0.00, 0.08]). As expected, accuracy was higher on trials in easier 

task blocks and following trials with better performance than expected. Importantly, baseline pupil 

size showed a positive correlation with accuracy. As such, accuracy on the upcoming trial was 

higher when baseline pupil size was greater, while TEPR did not correlate with accuracy.  

The model results predicting correct RTs (Figure 8E) showed that the significant predictors 

of trial-by-trial RT were TEPR (B = -1.36, CI [-1.94, -0.79]), baseline pupil size (B = -2.24, CI [-

2.83, -1.66]), expected accuracy (B = -4.97, CI [-6.02, -3.85]) and Task Difficulty (B = 2.38, CI 

[2.11, 2.64]). The effect of remaining predictors were not significant (PE: B = -0.08, CI [-0.55, 

0.39]; DPE (B = 0.02, CI [-0.39, 0.43]). As expected, RTs was longer on trials in more difficult 

task blocks and when the expected accuracy was lower. Moreover, both smaller baseline pupil size 

coupled with smaller TEPRs predicted longer RTs.  
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Discussion 
 

While a substantial body of work has shown that cognitive effort is aversive and costly 

(Kool et al., 2010; Westbrook, Kester & Braver, 2013; Sayali & Badre, 2020), a separate line of 

research on intrinsic motivation suggests that people spontaneously seek challenging tasks. 

According to one prominent account of intrinsic motivation, the Learning Progress Motivation 

theory, the preference for difficult tasks reflects the dynamic range that these tasks yield for 

minimization of performance accuracy prediction errors (Kaplan & Oudeyer, 2007; Oudeyer, 

Gottlieb & Lopes, 2016). Here we test this hypothesis, by asking whether greater engagement with 

intermediately difficult tasks, indexed by subjective ratings and objective pupil measurements, is 

a function of trial-wise changes in performance prediction error.  

Across four individually assigned difficulty levels, the current study dissociated subjective 

task engagement from task difficulty. As such, the current results show that subjective engagement 

and liking scores, as indexed by the flow questionnaire, increased with increasing task difficulty 

despite significant decreases in task performance and perceived task ability. Previous research 

(Ulrich et al., 2014; Ulrich, Keller & Grön, 2016; Katahira et al., 2018) on flow states has shown 

that these states could be induced empirically by dynamically adjusting the difficulty of the task 

to match participants’ current performance levels. For example, in these flow conditions, if the 

participant correctly solved the last two trials, the difficulty of the current trial was increased by 

one level, resulting in an average of 50% accuracy across trials. This stood in contrast to the 

experience of easy and difficult task levels, in which the accuracy was deterministically above 

90% or less than 5%, respectively. Thus, in contrast to the experience of overly easy and overly 

difficult tasks, where participants were certain that their performance would either almost always 

be correct or incorrect, during flow conditions at least two task parameters were different: 1) 

participants were not certain of the outcome of their performance (‘performance uncertainty’); and 

2) participants’ performance on the current trial had a causal effect on the difficulty of the next 

trial. With the current study, we isolated the role of performance uncertainty on task engagement 

by assigning difficulty levels corresponding to 25, 50, 75 and 100% correct. Thus, critically, unlike 

the classic flow paradigm, our conditions differed only in terms of performance uncertainty, while 

keeping constant other factors of no interest.  

In this updated design, we showed that intermediate effort levels yielded greater prediction 

errors as well as prediction error changes compared with the easiest difficulty level but not the 
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most difficult level, leading to a plateau of prediction error changes as well as subjective 

engagement scores at the Intermediate1 difficulty level. This plateau effect stands in contrast to 

previous flow findings (Ulrich et al., 2014; Ulrich, Keller & Grön, 2016), which showed an 

inverted-U shape function of subjective task engagement across difficulty levels. We argue that 

this discrepancy might be due to differences in study designs. We found that learning progress 

(prediction error minimization) was the highest in the most difficult task condition, indicating that 

participants showed the greatest task improvement at the task level they were initially around %25 

correct, increasing average accuracy ~40% accuracy across two blocks. The most difficult task 

was still within the capacity range of the participants, and hence, was not impossible for them to 

master. This is in contrast with Ulrich et al. (2014, 2016)’s ‘overload’ task manipulation in which 

the task level was way above the participant’s own capacity and the average accuracy rate was 

around %5. This difference between paradigms made the most difficult task condition in our study 

another intermediately challenging task condition. Importantly, we found that subjective 

engagement also increased with increasing effort level, prediction error magnitude and prediction 

error minimization (learning progress). Thus, we have shown that intermediately challenging tasks 

which yielded the greatest range for prediction error changes received greater liking and 

engagement scores than the easiest level, leading to plateau of subjective pleasure across difficulty 

levels. These results suggest that what might be underlying the subjective pleasure during flow 

states might be the associated increased dynamic range for minimization of performance accuracy 

prediction errors.  

This observation is generally consistent with previous literature indicating that perceived effort 

costs can be alleviated by subjective reward received during task performance (Inzlicht, Shenhav 

& Olivola, 2018). Furthermore, Devine and Otto (2021) have shown that receiving temporal 

information about progress reduced demand avoidance in a demand selection task in the absence 

of reward, indicating that information regarding performance improvements influenced cost-

benefit decisions regarding cognitive effort. These results underscore the value of progress in 

mediating effort costs. Consistently, Geana et al. (2016) have manipulated the predictability of a 

task by asking the participants to predict numbers generated by a virtual machine and controlling 

the difference between the predicted number and the actual generated number (prediction errors). 

They have shown that people switched from a current task when that current task offered too much 

or too little change in prediction errors, indicating that an optimal amount of information gain, as 
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tracked by prediction errors, is necessary for the motivation to stay on task. Indeed, it was recently 

proposed that easy tasks that are below participants’ own capacity are perceived as boring, because 

they offer little to no information gain (Agrawal et al., 2021). This framework assumes that mental 

tasks occupy limited resources and engaging in such tasks incurs an opportunity cost of not 

engaging in other potentially valuable tasks (Kurzban et al., 2013). Thus, the utility of the current 

task signals whether to stay engaged with the current task or explore other tasks to maximize 

reward in a given environment. Further, the utility of a task is comprised of both its expected 

rewards and the value of the information it provides. Thus, an agent who mastered a task would 

be expected to switch to other tasks that provides opportunity for learning. This prediction concurs 

with the finding that (Baranes, Oudeyer & Gottlieb, 2014), in a video game setting, when people 

are given the option to either repeat the same difficulty level or to voluntarily increase difficulty, 

they gradually increase the difficulty of the game they play even when it means having poorer task 

performance. The current study corroborates these observations and firmly establishes the link 

between effortful task engagement and (the reduction of) performance prediction error.  

Our findings are reminiscent of studies suggesting a key role for efficacy in the willingness 

to exert cognitive effort. Efficacy refers to how much one’s efforts will impact the outcome of 

these efforts (Bandura, 1986). For example, if an outcome is driven mostly by factors outside of 

one’s control, one’s efficacy would be low. An updated version of the Expected Value of Control 

theory (EVC; Shenhav, Botvinick & Cohen, 2013) incorporates self-efficacy as a determinant of 

cost-benefit calculations regarding effort allocation, where higher efficacy increases the amount 

of effort exertion (Blain & Sharot, 2021; Frömer et al., 2021; Shenhav, Botvinick, & Cohen, 2013). 

Consistent with this framework, a recent study manipulated subjective efficacy by changing the 

contingency between actions and reward outcomes in a Stroop task design (Frömer et al., 2021). 

They demonstrated that if participants perceived their efforts as efficacious, they are more likely 

to exert control, as indexed by higher contingent negative variation (CNV) amplitude, an event-

related potential (ERP) known to track proactive control allocation, and higher P3b, ERP known 

to signal incentive evaluation, during initial cue period. The current study goes beyond that prior 

work by decoupling task difficulty from outcome contingency:  none of the task conditions 

received performance-contingent rewards. More specifically, our findings substantiate Learning 

Progress Motivation theory, according to which minimization of prediction errors registers as 

value. These results might thus inspire the updating of current resource allocation models of 
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cognitive effort, such as EVC, with parameters capturing performance accuracy prediction error 

and/or prediction error change.  

The current study results raise the possibility that increases in challenging task engagement 

are accompanied by prediction error-related changes in arousal, perhaps mediated by locus 

coeruleus (LC) activity and noradrenaline.. According to Adaptive Gain Theory of LC (Aston-

Jones & Cohen, 2005), there are two modes of LC activity: tonic and phasic. Baseline and short-

term burst-like activities of LC are typically inversely correlated. In a tonic mode, baseline LC 

activity is greater than momentary LC bursts. In this mode, the system is disengaged, and behavior 

is inattentive or distractible. On the other hand, the phasic mode is characterized by low baseline 

LC activity and greater LC bursts that are typically coupled with task-relevant outcomes or 

responses. Thus, in order to verify the subjective preference of challenging tasks, we related pupil 

size, as an objective marker of task engagement to subjective engagement scores.  

Previous research has shown that phasic pupil response, which has been demonstrated to 

correlate with LC activity (Gilzenrat et al., 2010), tracks task utility where reward was coupled to 

task performance. The results were interpreted to reflect disengagement from tasks that were too 

difficult. In line with these observations, the current results show that in easier tasks where 

expected accuracy was higher were accompanied by smaller baseline pupil size and greater TEPRs 

also in the absence of performance-contingent rewards. These results indicate that expected 

performance mediates pupil responses in a way similar to expected reward and are consistent with 

previous research (Massar et al., 2016) which showed that an increase in pupil diameter was only 

present when rewards were contingent on good performance (high reward condition) but not when 

reward was provided at random (random reward condition), indicating the coupling between pupil 

size and performance-based reward might be mediated by expected task accuracy.  

More critically, baseline pupil size were also predicted by performance prediction errors (PE) 

(i.e. being better than expected) as well as performance progress (DPE): Greater PE and greater 

performance progress were associated with smaller baseline pupil size. Previous evidence 

indicates that pupil size increases monotonically with greater task difficulty (Belayachi et 

al., 2015; Brouwer, et al., 2014; Irons, Jeon & Leber 2017; Klingner, Tversky & Hanrahan, 2011; 

Moresi et al., 2008, van der Wel & van Steenbergen, 2018). Our results demonstrate that task-

evoked pupil size changes with engagement, in addition to task difficulty or accuracy changes. 

This conclusion is generally in line with recent evidence presented by da Silva Castanheira, 
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LoParco, and Otto (2020), who demonstrated that task-evoked pupil size changes as a function of 

effort investment, even when task demands were kept constant. Their finding that pupil size was 

associated with better task performance, despite constant task demands, led them to propose that 

the pupil response serves as a reliable index of cognitive effort investment. Here we go beyond 

this by showing that this link exists even in the presence of accuracy decline, and can be accounted 

for, in part by changes in performance accuracy prediction error (changes).  

Note that, contrary to baseline pupil size, cue-related pupil size did not relate to PE or DPE and 

only tracked expected accuracy of the upcoming trial. These results suggest that the prediction 

error related to the previous task performance no longer influences the pupil size once the new 

trial is signaled by the presentation of the cue. Importantly, the current study tested the relationship 

between task difficulty and phasic pupil size (TEPR) during a cue period and not during task 

performance. As such, cue related pupil size only tracked expected accuracy of the upcoming task, 

consistent with previous accounts (Kurniawan, Grueschow & Ruff, 2021) which dissociated the 

time of effort anticipation from that of effort exertion in an instrumental effort paradigm and 

showed that pupil size tracked the anticipation of the upcoming effort level of the task in a 

voluntary choice paradigm. Moreover, these increases in pupil dilation were stronger when the 

participants accepted to exert the effort option versus not, suggesting that pupil size might be 

associated with the energization required to perform an upcoming action. Current results, 

combined with the previous literature, suggests that cue related pupil size signals expectations 

about effort requirements rather than the exertion of effort itself. 

The link between noradrenergic arousal and task engagement has been argued to be 

mediated by the anterior cingulate cortex (ACC). The ACC is a primary source of cortical input to 

the LC, and encodes uncertainty-related signals that correlate with pupil diameter, a putative proxy 

of LC activity. Intriguingly, Muller and colleagues (2019) have recently shown that changes in the 

perceived uncertainty in the internal model of environmental states might be linked to changes in 

noradrenergic functioning. Pupil diameter was larger during periods of perceived uncertainty and 

constricted as expectations became more reliable. ACC activity correlated with these trial-by-trial 

changes in pupil size. Furthermore, another study (Lavin, San Martín & Rosales Jubal, 2014) found 

that pupil size tracked task uncertainty and surprise independent of feedback magnitude in a reward 

learning task, suggesting that pupil size might be a marker of learning in uncertain environments. 

The current results corroborate these findings by showing that pupil size tracked performance 
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prediction errors and their minimization independent of task difficulty, potentially boosting task 

engagement in more challenging tasks via noradrenergic arousal mechanisms. The trial-by-trial 

relationship between prediction error change and pupil size, provides direct evidence for the 

Learning Progress Motivation theory (Oudeyer, Gottlieb & Lopes, 2016), which states that 

motivation for challenging tasks is a function of the opportunity for improving performance and 

learning.  

These findings also parallel evidence that the experience of flow is characterized by an 

intermediate level of arousal, as indexed by intermediate sympathovagal system activation (heart 

rate and breathing rate) and an intermediate level of ACC activity (de Sampario Barros et al., 2018; 

Ulrich et al., 2014; Ulrich, Keller & Grön, 2016). Moreover, direct stimulation of the vagus nerve, 

potentially via its role in activating LC and modulating noradrenaline release, was shown to be 

associated with reports of reduced flow experience (Colzato, Wolters & Peifer, 2018). However, 

no studies to date have directly tested the relationship between the LC-associated pupil response, 

performance predictions and optimally challenging effort. The current study firmly establishes 

such a relationship between pupil size and challenging task anticipation by showing that smaller 

baseline pupil size predicted greater subjective task engagement as assessed by the flow 

questionnaire at the end of each task block, while TEPR did not relate to flow scores. The lack of 

TEPR-flow relationship in the presence of baseline pupil-flow relationship might underscore the 

dissociation between baseline pupil size and TEPR in tracking motivational salience and task 

preparation, respectively (Chiew & Braver, 2013; Kostandyan et al., 2019).  

While the mechanism underlying intermediate effort preference in our study points to the 

role of LC-based arousal, pupil size also has been associated with dopaminergic activity (Manohar 

& Husain, 2015; Muhammed et al., 2016). The dopaminergic system is mostly located in the 

midbrain ventral tegmental area (VTA) and substantia nigra (SN), and is traditionally involved in 

reward processing and value-based behaviour (Olds & Milner, 2020; Schultz, Dayan & Montague, 

1997; Schultz, 2007). Moreover, DA is involved in tracking reward uncertainty, in a way to 

facilitate learning (Gershman & Uchida, 2019; O’Doherty et al., 2003). Future studies should 

disentangle the role of noradrenergic and dopaminergic systems in mediating the relationship 

between intermediate challenge and pupil size.  

The interpretation of the results also are not without constraints. As described earlier, unlike 

in the flow induction paradigm (Ulrich et al., 2014; Ulrich, Keller & Grön, 2016), our design did 
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not include a supra-threshold capacity difficulty level. Thus, in our task, all task conditions except 

the easiest difficulty level could be mastered by the participant. Therefore, the current design 

cannot answer what factors underlie the (dis)engagement during tasks that are above capacity 

limits.  

Finally, although we measured subjective and pupillary engagement in the absence of 

external reward, in order to induce a state of flow, we provided performance feedback 

(Csikszentmihalyi, 1990). Hence, we were not able to test whether these findings would also hold 

in the absence of external feedback, which might be considered a form of external reward, underlie 

individual variability in feedback sensitivity and complicate our definition of internal rewards.  
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Supplementary Material 

Supplementary Methods 1 

Distribution of participants’ ages was skewed (Supplementary Figure 1). The Shapiro-Wilk 

statistic associated with participants’ ages was W = 0.60, indicating that age distribution 

significantly deviated from normality (p < 0.001).  

 

 

 

 
 

Supplementary Fig 1. Distribution of participants’ ages.  
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Supplementary Results 1 

The effect of Task Difficulty on the subcomponents of Flow inventory 

As the flow questionnaire consisted of components of perceived engagement, liking, ability 

and flow of time, we examined effects of Task Difficulty on each component separately 

(Supplementary Figure 2).  

The results showed a significant effect of Task Difficulty on involvement (F(1.479,51,765) 

= 32.617, p < .001), where involvement scores significantly increased with Task Difficulty. Again, 

subjective engagement scores plateaued at intermediate Task Difficulty. Pairwise t-tests revealed 

significantly lower scores for easy versus Intermediate1 ( p < .001), easy versus Intermediate2 (p 

< .001), easy versus Difficult (M = 0.720, SD = 0.035, p < .001). No significant differences were 

found for Intermediate1 versus Intermediate2 (p = 0.391), Intermediate1 versus Difficult (p = 

0.120), nor Intermediate2 versus Difficult (p = 1.000). 

Liking scores also significantly differed across Task Difficulty (F(2.379,83.265) = 11.148, 

p < .001), but this time the effect of Task Difficulty plateaued at Intermediate1 . Specifically, liking 

scores were significantly lower for Easy versus both Intermediate levels (Intermediate1: p < .001; 

Intermediate2: p = .005) and did not differ between Easy vs Difficult (p = 0.091), or Intermediate 

vs Difficult (between intermediate1 and intermediate2 (p = 0.339), Intermediate1 and Difficult (p 

= 0.114) nor between Intermediate2 and Difficult (p = 0.928)).  

Consistent with their own task performance, participants perceived ability at each Task 

Difficulty level showed a declining trend. Subjective ability scores significantly different across 

Task Difficulty levels (F(2.313,80.955) = 69.095, p < .001). Specifically, Easy and Intermediate1 

level yielded higher ability compared with Difficult Task Difficulty (Easy: p<0.001; 

Intermediate1: p = 0.005), while other Task Difficulty, including Easy and intermediate levels did 

not significantly differ from each other (easy vs. intermediate1 (p =1.000), easy vs. intermediate2 

(p = 0.209)), indicating that participants rated their own ability for the easiest and intermediate 

difficulty levels similarly.  

Lastly, perceived time on task showed a significant inclining linear trend across Task 

Difficulty (F(1.428,49.98) = 32.492, p < .001). Specifically, both intermediate difficulty levels 

yielded higher scores compared with Easy (both ps < .001), and easy compared with difficult (p < 

.001), while intermediate levels did not significantly differ from each other (p = 0.872) nor from 

Difficult (Intermediate1 vs. Difficult, p = 0.643; Intermediate2 vs. Difficult, p = 1.000), indicating 
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that subjective time passed quicker with increasing difficulty levels and plateaued at intermediate 

difficulty.  

 

 

 
 

 

Supplementary Fig 2. Raincloud plot for B) involvement index, C) liking index, D) ability index, 
E), and time index across task condition. The dots display each participant’s mean score. F) Bar 
chart showing the mean score of each component for each task condition, error bars indicate 
standard error. 
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Supplementary Results 2 

 
The effects of task related parameters on pupil size and the motivational and behavioural 

relevance of pupil size only in volunteers below 36 years old 

We repeated the analysis performed in sections 3.4. - 3.6. only in volunteers that are below 36 

years old. We show that the results qualitatively do not change when volunteers above 36 years 

old (N=3) are excluded from analysis.   

Effects of task-related factors on pupil size  

 Baseline pupil size on the current trial decreased with PE (B = -0.56, CI [-0.65, -0.47]), 

DPE (B = -0.12, CI [-0.18, -0.06]), expected accuracy (B = -0.32, CI [-0.47, -0.16]) and Task 

Difficulty (B = -0.15, CI [-0.18, -0.11]), indicating that smaller baseline pupil size was associated 

with greater prediction error, learning progress, expected accuracy and task difficulty (Figure 

Supplementary Fig 3A). 

 On the other hand, pupil size during the cue period  (TEPR) was largely predicted by the 

baseline pupil size. TEPR on the current trial increased with smaller baseline pupil size (B = -0.88, 

CI [-0.91, -0.84]), greater expected accuracy (B = 0.17, CI [0.05, 0.26]) and easier task blocks 

(Task Difficulty: (B = -0.12, CI [-0.14, -0.10])). The effect of PE and DPE were not significant 

(PE (B = -0.02, CI [-0.07, 0.02]), DPE (B = -0.01, CI [-0.04, 0.02]) In other words, phasic pupil 

response showed an inverse relationship with the baseline pupil size and was greater when the 

expected accuracy of the upcoming trial was higher (Supplementary Fig 3B). 

Motivational relevance of pupil size 

  The model results (Supplementary Fig 3C) showed that Baseline pupil size and Task 

Difficulty but not TEPR, PE, DPE were significant predictors of subjective flow scores. 

Participants reported greater flow scores following trials with smaller baseline pupil size (B = -

0.32, CI [-0.48, -0.15]) and greater Task Difficulty (B = 0.35, CI [0.09, 0.62]), indicating that 

greater subjective engagement was associated with smaller baseline pupil size and greater task 

difficulty.  

Behavioural relevance of pupil size 

  The model results predicting accuracy (Supplementary Fig 3D) showed that the 

significant predictors of trial-by-trial accuracy were baseline pupil size (B = 0.10, CI [0.02, 0.17]), 

expected accuracy (B = 0.20, CI [0.05, 0.34]), and Task Difficulty (B = -0.12, CI [-0.15, -0.08]), 
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while the effect of remaining predictors were not significant (TEPR: B = 0.07, CI [-0.00, 0.14]; 

PE: B = 0.06, CI [0.00, 0.012]. Importantly, baseline pupil size showed a positive correlation with 

accuracy. As such, accuracy on the upcoming trial was higher when baseline pupil size was greater, 

while TEPR did not correlate with accuracy.  

The model results predicting correct RTs (Supplementary Fig 3E) showed that the 

significant predictors of trial-by-trial RT were TEPR (B = -1.22, CI [-1.82, -0.61]), baseline pupil 

size (B = -2.11, CI [-2.74, -1.48]), expected accuracy (B = -4.95, CI [-6.05, -3.85]) and Task 

Difficulty (B = 2.41, CI [2.12, 2.69]). As expected, RTs was longer on trials in more difficult task 

blocks and when the expected accuracy was lower. Moreover, both smaller baseline pupil size 

coupled with smaller TEPRs predicted longer RTs.  

 

 
Supplementary Fig 3. Densities of model parameter estimates. A) Model parameter densities for 
predicting Baseline pupil size. B) Model parameter densities for predicting TEPR. C) Model parameter 
densities for predicting flow scores. D) Model parameter densities for predicting accuracy.  D) Model 
parameter densities for predicting Correct RTs. 
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