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Abstract 
 
 Exerting cognitive control is well known to be accompanied by a subjective effort cost and 

people are generally biased to avoid it. However, the nature of cognitive control costs is 

currently unclear. Recent theorizing suggests that the cost of cognitive effort serves as a 

motivational signal to bias the system away from excessive focusing (i.e. cognitive stability) and 

towards more cognitive flexibility. We asked whether the effort cost of cognitive stability is 

higher than that of cognitive flexibility. Specifically, we tested this prediction in the domain of 

working memory by using (i) a delayed response paradigm that allows us to manipulate demands 

for stability (distractor resistance) and flexibility (flexible updating) of working memory 

representations, as well as (ii) a subsequent cognitive effort discounting paradigm that allows us 

to quantify the subjective effort costs assigned to performing the delayed response paradigm. 

We show strong evidence, in two different samples (28 and 62 participants respectively) that 

subjective cost increases as a function of demand. Moreover, we demonstrate that the 

subjective cost of performing a task requiring cognitive stability (distractor resistance) is higher 

than that requiring flexible updating, supporting the hypothesis that the subjective effort cost of 

cognitive stability is higher than that of flexibility.  
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Introduction 
 

Cognitive control often refers to the set of mechanisms required to focus on and pursue a goal, 

especially in the face of distraction, temptation or conflict. Succeeding to exert cognitive control 

and focusing on the task at hand is highly valued in our industrialized society, as it allows us to 

complete our tasks and achieve our long-term goals. Despite its importance, failures of cognitive 

control are very common. Procrastinating, failing to meet deadlines and performance 

decrements after fatigue are such examples familiar to most of us.  

Why do people fail to exert cognitive control? Focusing on a task carries an effort cost, making 

people biased to avoid it1, even if such avoidance implies forgoing rewards2,3. The mechanisms 

underlying these cognitive effort costs remain elusive. While poor performance on cognitive 

control tasks has often been explained as limitations in cognitive capacity, more recent accounts 

shift the focus from capacity to motivation4. These accounts are supported by experiments that 

show that performance decrements (caused by effort) can be overcome by increases in incentive 

motivation, for example as a function of monetary rewards5. According to some such resource 

allocation accounts, the subjective cost of cognitive effort represents a motivational signal to 

remain open to alternative opportunities, thus promoting flexibility even at the expense of 

reduced engagement in a current ongoing task1,6–8. As our attentional resources are limited9,10, 

focusing on a given task means that we have to give up on other tasks that require the same set 

of mechanisms, thus incurring an opportunity cost6. Hence, failures of cognitive control can be 

viewed as stemming not just from failures in implementation, but also as a choice to pursue 

alternative tasks that may be more rewarding.  

Such a motivational mechanism would be adaptive, given that our constantly changing 

environment requires a dynamic balance between the cognitive states of focus and flexibility8,11. 

Focusing is crucial for completing our goals, but flexibility is essential when goals change. 

Flexibility also allows us to explore alternative ways to solve a problem and come up with new 

ideas, i.e. to be innovative and creative. Mind-wandering, for example, has been associated with 
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more “a-ha” moments when problem- solving12–15 and practicing voluntary mind-wandering has 

been proposed as a training method to boost creativity16.  

According to current theorizing17,  the stability/flexibility tradeoff in working memory is 

moderated by the strength of current task representations. Strong representations facilitate 

focusing on a current task-set at the cost of reduced flexibility, for example when task- switching. 

Weak representations in contrast allow flexible adaptation but reduce focused intensity.  

How do we decide when to be focused and when to relax constraints in order to be flexible? We 

have previously argued that we arbitrate between a focused (closed) state versus a flexible 

(open) one, based on a cost-benefit analysis in which the benefit of cognitive effort corresponds 

to increased focus and is weighted against its (e.g. opportunity) cost, corresponding to reduced 

flexibility11 . We thus reasoned that the cost of cognitive stability is higher than that of cognitive 

flexibility. Here, we investigate this hypothesis by using a novel version of the cognitive effort 

discounting paradigm (COGED)3 that allowed us to measure the cost that people assign to 

performing tasks requiring cognitive stability or flexibility. Specifically, rather than asking 

participants to discount monetary offers to perform the N-back task, which requires both 

focusing and flexibility at the same time, we asked participants to discount offers to perform a 

working memory task requiring either stable maintenance and distractor resistance or flexible 

updating. This design allowed us to separately quantify the subjective costs of a task with 

demands for greater stability or flexibility, respectively. We obtained two independent datasets 

to replicate, and robustly establish the predicted differences between the costs of focus and 

flexibility.  

As in the case of the original COGED paradigm, our paradigm consisted of two stages. In the first 

stage, subjects performed variants of a well-established colour wheel working memory task18. 

Participants experienced different demands (set sizes 1 to 4) of the two conditions of the task. 

One condition required flexible updating; the other condition required focused distractor 

resistance (stability). In the second stage, participants made a series of choices between repeating 

one of the working memory conditions in return for monetary rewards. Some trials required 

choices between either one of the (stability or flexibility) task conditions versus taking a break. 
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Other trials required direct comparisons between the two (flexibility versus stability) task 

conditions.  

Results 
 

Working memory task performance 

We investigated the effect of demands for working memory stability versus flexibility using a 

modified color wheel task (Figure 1A, see Methods section for more details). Participants were 

exposed to conditions requiring either distractor resistance (i.e. ignore condition) or flexible 

updating (i.e. update condition). Every trial of the paradigm consisted of three phases that were 

separated by two delay periods. In the first phase (encoding), participants saw coloured squares, 

which they always had to memorize. Then after a delay of two seconds, participants saw new 

colours in the same square locations (interference phase). In the ignore condition, participants 

were instructed to maintain in their memory the colors from the encoding phase and not be 

distracted by the new interfering colors. In the update condition, participants had to let go of their 

initial representations and update the new stimuli into their working memory. We manipulated 

the working memory demand by varying the number of stimuli that needed to be remembered. 

During the response phase, participants had to match the color of one of the relevant squares by 

clicking with the mouse on a color wheel. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 29, 2019. ; https://doi.org/10.1101/743120doi: bioRxiv preprint 

https://doi.org/10.1101/743120


5 
 

 

Figure 1. A  An illustration of the color wheel working memory task. Every trial of the task consists 
of three phases. In the encoding phase (2 s), participants need to memorize colored squares. After 
a delay of 2 s, during the interference phase (2 s), a letter indicates if it is an ignore (I for ignore) 
or an updating (U for update) trial. In ignore trials, participants need to maintain colors from the 
encoding phase and ignore intervening stimuli. In update trials, participants have to let go of their 
previous representations and update into their memory the stimuli from the interference phase. 
Another delay separates interference from the response phase. This delay is 2 s for ignore and 6 s 
for update trials to match the time that the target stimuli are maintained between conditions. 
During response phase, participants see a color wheel and black frames of the same squares; they 
have 4 s to click on the target color for the highlighted square. Demand is manipulated by varying 
the number of squares from one to four. The example displayed here is of the highest demand. B 
Example trials of the COGED task. Participants perform two versions of choices. In the “task vs no 
effort” version, participants have to choose between repeating a level of ignore or update and not 
repeating the color wheel task at all (“No Redo”). The task option offer remains fixed at €2 and the 
no effort “No Redo” option varies from €0.1 to €2.2. In the “Ignore vs Update” trials, participants 
must choose between repeating either the ignore or update condition of the same demand. Ignore 
offers are always fixed at €2 and update offers vary from €0.1 to €4. Trial duration is 6 s. The trials 
are intermixed.   

 

Accuracy 

 Performance on the working memory task was sensitive to the demand (i.e. set size) manipulation 

and, in line with earlier studies contrasting ignore and update trials, participants performed more 
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poorly in the ignore compared with the update condition19,20 (Figure 2A&B; Supplemental Table 1 

for descriptive statistics; Supplemental Figure 1 for precision indices). This observation was 

supported by Bayesian model comparison (Table 1), showing strongest support for the model 

including set size and condition in both studies (BF10 = 24876 and BF10 = 5.5e +12, respectively). 

The runner-up model was the one including both main effects and their interaction, which was 

~3.2 and ~2 times less likely than the model with the main effects only for experiment 1 and 2 

respectively. The effects analysis confirmed the conclusion based on model comparison, showing 

that accuracy decreased with increasing set size (Experiment 1: F1.52,39.6 = 6.510, p = 0.007, BFINC = 

83, Experiment 2: F1.63,97.7 = 16.998, p = 2.8e-6, BFINC = 1.6e +10) and that participants performed 

better on update compared with ignore trials (Experiment 1: F1,26 = 11.068, p = 0.003, BFINC = 448, 

Experiment 2: F1,60 = 24.095, p = 7.4e-6, BFINC = 939) (Table 2). Evidence for an interaction effect 

was not conclusive (Experiment 1: F2.14,78 = 2.205, p = 0.116, BFINC = 1.3, Experiment 2: F2.32,139.3 = 

3.238, p = 0.035, BFINC = 1.9). We conclude that accuracy decreased as a function of set size and, 

across set sizes, was worse on ignore relative to update trials.  
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Figure 2. Performance on the color wheel working memory task. A Median deviance for 
experiment 1 (27 participants). B Median deviance for replication experiment 2 (61 participants). 
Deviance in degrees from the correct color is displayed here as a function of set size for ignore 
and update trials. C&D Median reaction times as a function of set size for ignore and update 
conditions. C Experiment 1 (27 participants). D Experiment 2 (61 participants). Error bars indicate 
within-participant SEM21,22 . 
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Table 1. Model comparison relative to the null model for deviance in the working memory task 

Models   BF 10 

  
Experiment 1 Experiment 2 

Condition+ Set size 24875.5 5.5e +12 

Condition+ Set size+ Condition* Set size 8023.0 2.7e +12 

Set size 48.3 5.8e +9 

Condition 263.2 346.2 

 

 

Table 2. Effects analysis for deviance in the working memory task 

Effects   BF inclusion Pvalue 

    Experiment 1 Experiment 2 Experiment 1 Experiment 2 

Condition 448.2 939.4 0.003 7.4e-6 

Set size 83.2 1.6e +10 0.007 2.8e-6 

Condition* Set size 1.3 1.9 0.116 0.035 

 

Reaction times 

Statistical analyses suggest that RTs varied as a function of demand and task condition; participants 

were responding faster on trials that presented fewer squares (i.e. lower set size) and in the ignore 

(versus update) condition (Figure 2C&D; Supplemental Table 2 for descriptive statistics). In the 

first experiment, Bayesian model comparison (Table 3) showed that the best model was the one 

including condition, set size and the interaction between the two (BF10 = 4.8e +31, ~1.4 times 

better than the one also including the interaction). Effects analyses (Table 4) confirmed that 

participants were faster on ignore compared with update trials (F1,26 = 16.436, p = 4.1e-4, BFINC = 

44.6), a very strong set size effect (F3,78 = 64.739, p = 4.1e-21, BFINC = ∞) and an interaction effect 

(F2.41,62.7 = 5.643, p = 0.003, BFINC = 26). In the second experiment, the main effects were in the 

same direction (set size: F2.4,141 = 90.386, p = 1.6e-28, BFINC = ∞, condition: F1,60 = 16.179, p = 1.6e-
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4, BFINC = 88), but the evidence for an interaction was weaker (F2.7,165 = 4.405, p = 0.007, BFINC = 

3.8). The model that only involves condition and set size was marginally better than the one 

including the interaction. Thus, the dependence of the set size effect on task demand is not clear.  

Table 3. Model comparison relative to the null model for RTs in the working memory task 

Models   BF 10 

    Experiment 1 Experiment 2 

Condition+ Set size 6.7e +30 1.4e +53 

Condition+ Set size+ Condition* Set size 4.8e +31 1.3e +53 

Set size 8.2e +29 2.0e +51 

Condition 0.84 3.5 

 

 

Table 4. Effects analysis for RTs in the working memory task  

Effects   BF inclusion Pvalue 

    Experiment 1 Experiment 2 Experiment 1 Experiment 2 

Condition 44.6 87.8 4.1e-4 1.6e-4 

Set size ∞ ∞ 4.1e-21 1.6e-28 

Condition* Set size 25.5 3.8 0.003 0.007 
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Cognitive effort discounting: To repeat or to avoid?  

Next, we quantified the subjective cost participants assigned to performing the update and ignore 

trials. The design of this task was inspired by the temporal and cognitive effort discounting 

literature3,23. To assess subjective value, participants made choices about repeating a level of the 

color wheel task for a monetary reward (effort option) or not repeating it for a usually smaller 

reward (no effort option) (Figure 1B).  We decided to contrast the task offer against a break 

(instead of a lower load offer) as this reflects real- life choices more closely and incurs higher 

opportunity costs. The task offer was fixed at €2 and the “no effort” offer varied from €0.1 to €2.2. 

Every choice was sampled three times to account for response variability. Participants were 

instructed that after all choices were completed, one of them would be randomly selected and 

they would repeat a few blocks of that set size and mostly that condition (to reduce predictability). 

If the “no effort” option was selected, they were instructed that they should remain in the testing 

room for the same amount of time, but they could use their time as they pleased, e.g. make use 

of their phone or lab computer. They were also informed that receiving the monetary reward 

would not be contingent on their performance, as long as they put effort into doing the task. 

We computed participants’ indifference points (IPs) to estimate subjective value. Indifference 

points reflect the monetary amount offered for the presumably less effortful option at which 

participants are equally likely to choose one or the other, thus the probability of accepting either 

option would be 0.5. We calculated the probabilities of accepting the presumably easier offer using 

binomial logistic regression analysis. 

Figures 3A&B depict the logistic regression curves of an example participant for whom it was 

possible to estimate indifference points (the participant selected both the task and no effort 

options enough times to fit a logistic regression, see Methods section) for both update (A) and 

ignore (B) conditions. The indifference point (IP) represents the degree of discounting of the high-

effort offer, where an IP of 2 corresponds to subjective equivalence (given that the offer of the 

discounted task was always €2, IP = €2 implies that the participant finds the task and the no effort 

option equally costly). IPs smaller than €2 represent greater discounting (the participant finds the 

task option to be more costly than the no-redo option) and thus reduced subjective value. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 29, 2019. ; https://doi.org/10.1101/743120doi: bioRxiv preprint 

https://doi.org/10.1101/743120


11 
 

 

 

Figure 3. Example participant logistic regression curves. A, B Logistic regression curves for “task vs 

no effort” choices of one participant for update (A) and ignore (B) condition. The probability of 

accepting the “no effort” (i.e. no task) offer (y-axis) is plotted as a function of the amount of money 

offered for “no effort” (x-axis). Task offer was always €2 for both conditions and all set sizes and 

the “no effort” offer varied from €0.10 to €2.20. The estimated indifference point is the offer for 

“no effort” where the probability of choosing to do the task or the “no effort” option is equal (i.e. 

0.5). Indifference points decreased with increasing set size. C, D Example logistic regression curves 

for “ignore vs update” indifference points. The probability of choosing the update offer is shown 

to vary as a function of the amount of money offered for update. Ignore offer was always €2 for 

all set sizes, while the update offer varied from €0.10 to €4. The indifference point is the update 

offer for which the acceptance probability is 0.5, i.e. subjective equivalence. C: Example participant 

who discounted rewards in order to avoid ignore trials (preference for update). D: Example 
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participant who discounted rewards in order to avoid the more demanding levels of update trials 

(preference for ignore).  

 

Next, we analyzed IPs using Bayesian and classical 2x4 repeated measures ANOVAs to assess 

whether the subjective value of an offer decreased with demand. Indifference points are displayed 

as a function of set size and experiment in Figure 4A&B (Supplemental Table 3 for descriptive 

statistics). Overall, the results show that participants found higher demands of the task more costly 

as the subjective value decreased with increasing task difficulty (i.e. set size). Moreover, in line 

with our hypothesis, the subjective cost of performing the ignore condition is higher than that of 

the update condition (Figure 4A to D). On average, participants found the no effort option less 

costly than the task option, for both conditions. Analyses of data from Experiment 1 (Table 5) 

showed that the winning model, which included set size and condition (BF10 = 5006) was four times 

more likely than the runner-up model which included set size alone (BF10 = 1229). Our second 

experiment replicated this finding, with the same winning model (BF10 = 9.7e +19) being ~19 times 

more likely than the runner up (Table 5). Individual effects analyses (Table 6) strengthened these 

model comparison-based inferences: they provide very strong evidence for a set size effect 

(Experiment 1: F1.3,31 = 5.666, p = 0.016, BFINC = 1246, Experiment 2: F1.57,77 = 22.230, p = 2.8e-7, 

BFINC = 6.0e +15), indicating that participants find higher set sizes to be increasingly costly. In 

Experiment 1, there was anecdotal evidence that the subjective value of the ignore condition was 

lower than that of the update condition (F1,23 = 10.924, p = 0.003, BF10 = 3.1). The more powerful 

replication study showed extreme evidence for a lower subjective value of ignore versus update 

(F1,49 = 18.216, p = 9.0e-5, BF10 = 1684), indicating that participants found the ignore condition 

subjectively more costly than the update condition. Finally, there is limited evidence against an 

interaction effect (Experiment 1: F3,69 = 1.798, p = 0.168, BFINC = 0.2, Experiment 2: F2.66,130 = 2.167, 

p = 0.102, BF10 = 0.5).  
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Figure 4.  A, B “Task vs no effort” indifference points as a function of set size. A Experiment 1 (24 
participants). B Experiment 2 (50 participants). The more the indifference points deviate from 2, 
the more participants discounted the task option (the task offer was fixed at €2). C, D Logistic 
regression curves for “task vs no effort” choices per condition across set size. The probability of 
accepting the “no effort” (i.e. no task) offer (y-axis) is plotted as a function of the amount of money 
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offered for “no effort” (x-axis). Logistic curves estimated using the lme4 package24 in R25. C 
Experiment 1 (24 participants). D Experiment 2 (50 participants). E, F Indifference points for 
“ignore versus update” choices as a function of set size. E Data from experiment 1 (26 
participants). F Data from experiment 2 (58 participants). Indifference points smaller than 2 
indicate a preference for update over ignore (offer for ignore was fixed at €2). Error bars indicate 
within-participant SEM21,22. 

 

Table 5. Model Comparison  relative to the null model for “task vs no effort” indifference points 

Models   BF 10 

  
Experiment 1 Experiment 2 

Condition+ Set size 5002.7 9.7e +19 

Condition+ Set size+ Condition* Set size 722.8 5.2e +18 

Set size 1229.2 4.0e +16 

Condition 2.7 243.7 

 

 

Table 6. Effects analysis for “task vs no effort” indifference points  

Effects   BF inclusion Pvalue 

  
Experiment 1 Experiment 2 Experiment 1 Experiment 2 

Condition 3.1 1683.9 0.03 9.0e-3 

Set size 1241.0 6.0e +15 0.016 2.8e-7 

Condition* Set size 0.5 0.2 0.168 0.102 

 

Cognitive effort discounting: To Ignore or to Update?  

Next, we assessed choices that involved direct comparison between performing the ignore and 

the update trials. The offer for ignore was fixed at €2 and the offer for update varied from €0.1 to 

€4. Accordingly, an IP < 2 indicates a preference for (increased subjective value of) update vs 

ignore, while an IP > 2 represents a preference for ignore vs update (see Methods section for more 
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details). Figures 3C&D depict logistic regression curves of two example participants, one preferring 

the update condition and exhibiting an effect of set size (left panel) and the other preferring the 

ignore condition and not exhibiting an effect of set size (right panel).  

Descriptive statistics are presented in Supplemental Table 4 and one-sample t-test output in Table 

7. In Figures 4E&F, we report the average indifference points per set size. In accordance with our 

second hypothesis, the overall average subjective value of ignore versus update choices was less 

than 2 (1.88), indicating a preference for update over ignore. The support in the data for this 

hypothesis is ~4.8 times higher than the null (T-test (IP<2) t25 = -2.440, p = 0.011, BF-0 = 4.8). In 

Experiment 2, the average subjective value was 1.73 and a preference for update over ignore 

was ~65 times more supported by the data than no preference (T-test (IP<2): t57 = -3.535, p = 4.1e-

6, BF-0 = 65). The output of the one-way repeated-measures ANOVA shows very strong evidence 

for the data under the null hypothesis that subjective value is not influenced by set size 

(Experiment 1: F1.8,45 = 0.961 p = 0.382, BF10 = 0.149, Experiment 2: F1.2,69 = 0.069, p = 0.840, BF10 

= 0.023). Our results provide confidence in our second hypothesis that participants discount 

rewards in order to repeat flexible updating trials over distractor resistance and this does not vary 

with set size.  

 

Having established that ignore is both more difficult and perceived as more costly for most 

participants, we next asked whether variability in preference for update varies with variability in 

task performance. Plotting deviance for ignore versus update against preference for ignore 

Table 7. One-sample t-test results that "Ignore vs Update" IPs are smaller than 2 

Set size BF-o Pvalue 

 
Experiment 1 Experiment 2 Experiment 1 Experiment 2 

Across 4.8 64.9 0.011 4.1e-4 

1 2.4 6698.0 0.026 2.6e-6 

2 4.3 1105.0 0.013 1.8e-5 

3 4.2 13.2 0.013 0.002 

4 3.0 10.9 0.02 0.003 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 29, 2019. ; https://doi.org/10.1101/743120doi: bioRxiv preprint 

https://doi.org/10.1101/743120


16 
 

versus update reveals little correlation (r=-0.079, BF10=0.181, p=0.503, Figure 5 & Supplemental 

Figure 3). We also assessed a relationship between preference and performance using mixed 

effects logistic regression (see methods). We compared the models with and without the main 

effect of performance (deviance). For both experiments, adding deviance did not improve model 

fit significantly (Experiment 1: model without deviance: BIC: 4474.3, AIC: 4376.5; full model: BIC: 

4482.5, AIC: 4377.9, p(pr>Chisq) = 0.430; Experiment 2: model without deviance: BIC: 10535, 

AIC: 10426; full model: BIC: 10544, AIC: 10427, p(pr>Chisq) = 0.463). Additionally, in the full 

model, which includes deviance, the effect of condition is still present in Experiment 2 (p = 0.061 

for Experiment 1; p = 0.0001 for Experiment 2). The above suggest that variability in 

performance does not explain away differences in preference for update versus ignore. 
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 Figure 5. Correlation between condition differences in performance and preference (IP). Ignore 

minus update performance does not covary with ignore minus update IP. Depicted data pooled 

from both Experiments (74 participants).  

 

Discussion 
 

In this project, we set out to quantify the subjective value of cognitive stability and cognitive 

flexibility in the domain of working memory. We asked not only whether these working memory 

processes are associated with higher subjective costs when demand increases, but also whether 

tasks requiring cognitive flexibility carry a lower subjective cost than do tasks requiring cognitive 

stability. In keeping with prior work2,26–28 , we demonstrate highly robust and monotonic 

discounting of delayed response task value with parametrically increasing working memory load 

(i.e. set size). Most critically, the results provide strong evidence that the ignore version of the 

task with high stability demands is more costly than is the update version of the task with high 

flexibility demands: participants are willing to forgo higher monetary offers in order to avoid 

repeating performing ignore compared with update trials. This finding is evident both indirectly 

when participants had to choose between the task and a break, and also directly when they had 

to choose between ignore and update. This result was replicated in the second independent 

sample and concurs with our primary prediction that the cognitive effort cost of cognitive 

stability is higher than that of cognitive flexibility.  

Depending on one’s perspective, this effect of condition on effort cost might be very intuitive or 

surprising. We might be surprised, because the update trials were longer, and required encoding 

and gating into working memory twice the number of stimuli compared with the ignore trials. 

Moreover, many studies have shown that tasks with high demands for cognitive flexibility, like 

task switching and set-shifting, are accompanied by robust (residual) costs29,30. However, the 

effect might be considered intuitive, if we recognize that reorienting to salient stimuli can be 

considered a bottom-up process. In this task, updating is a relatively automatic process, while  

ignoring requires the withholding of intervening stimuli and thus resolution of conflict, that is, 
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the core function of cognitive control10,31–33.  This then brings us back to the original question: 

What makes cognitive control costly? 

 

One possibility is that this effect reflects a difference in opportunity costs. In our task, the more 

subjectively costly ignore trials were 4 seconds shorter than were the cheaper update trials, thus 

opportunity costs are unlikely to map directly to time costs34. However, we speculate that the 

effect of task demands on subjective cost reflects an opportunity cost of focusing: the cognitive 

strategy required for accurate ignore versus update performance differs in the degree to which it 

allows novel input and thus, alternative opportunities, to impinge on current processing. More 

generally, it is possible that the brain is more strongly biased against tasks that demand stable 

focusing compared with flexible opening given that focusing will incur higher opportunity costs 

across environments.  

The observation that the subjective cost of repeating ignore is higher than that of update is in 

line with the finding that participants perform more poorly on ignore compared with update 

trials. This finding concurs with previous results from studies using an analogous task with ignore 

and update conditions19,35,36. In those prior studies, however, the task-relevant delay between 

the to-be-remembered items and the probe was shorter in the update than the ignore condition, 

rendering inference about the cognitive mechanism underlying the performance difference 

difficult. Here we show that the ignore condition is accompanied by worse performance than the 

update condition, even if task-relevant delay is matched between conditions.  

A key question that is raised by the performance difference between task conditions is whether 

the condition effect on subjective effort cost reflects differences in the degree of (aversion to) 

anticipated performance error. We argue, however, that an increase in the anticipated -

performance error is unlikely to account fully for the increase in subjective effort cost of the 

ignore versus update condition, for the following three reasons. First, while instructing 

participants, we highlighted that monetary rewards would not be contingent on performance 

during the ‘redo session’, so that performance error should not have influenced participants’ 

choices in our design. Second, in a statistical mixed-effects model that took into account 
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accuracy, the effect of condition was still present, as a trend in Experiment 1 and highly 

significant in the more powerful Experiment 2. Third, there was no evidence for a clear 

association between performance error and measured preference (Figure 5). In future studies, 

we might consider matching performance between the two conditions or provide “fake” 

feedback to influence participants’ beliefs about their performance.  

 

Notably, participants responded not only more accurately, but also more slowly on the update 

than the ignore trials. We are puzzled by this finding, and consider it possible that the slowing 

reflects a reduction in a nonspecific orienting response to the intervening stimulus, which might 

have acted as a warning signal. Warning signals are known to induce slowing of responses as a 

function of foreperiod (delay), which in our case is longer in update trials37. This hypothesis is 

supported indirectly by the observation that reaction times in flexible update conditions in 

previous studies in which cue delays were matched between conditions were indeed faster than 

in ignore conditions19,35. We also consider an alternative explanation, namely that the effect of 

condition on reaction times reflects a modulation of a decision threshold  rather than of 

attentional orienting, trading time for higher accuracy38 in the update condition in which the 

memory is more robustly maintained and such a strategy would be beneficial. Here we should 

note that in both experiments, the time of the mouse click was used as an index of reaction time. 

However, a clearer picture could be formed if we also had data on initial response times (mouse 

move) and decision times (move to click). This is a limitation that should be addressed in future 

studies.    

In addition to disentangling the subjective value of distracter resistance and flexible updating 

task performance, the present results strengthen and extend previous studies on the value of 

cognitive engagement. First, we confirm that, on average, people are averse to cognitive 

demand, are ‘cognitive misers’, even willing to decline rewards in order to avoid demanding 

tasks. This strengthens earlier work showing that participants prefer to avoid more demanding 

N-back tasks3, detection tasks27 or sustained attention tasks2. Our results further generalize 

these conclusions to the most classic of working memory tasks: the delayed response task. A 

distinct strength of our design is the fact that our implementation of the discounting procedure 
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takes into account the observation that choices are probabilistic39. Unlike prior studies on 

cognitive effort which used staircase procedures sampling every choice option only once2,3, we 

sampled the full discounting curve and every choice option multiple times. Furthermore, unlike 

prior studies, in which on the first trial a lower monetary offer was made for the low effort 

option than for the high effort option, we avoided (potential) anchor effects by presenting offers 

randomly. Finally, unlike previous discounting studies we also gave participants the opportunity 

to choose the effortful option for less money. As expected, most participants declined this offer, 

but the subjective value of four participants (total in both samples) was higher than 2 for at least 

one of the two working memory processes, indicating a preference for repeating the working 

memory task, suggestive of effort seeking40.  

 

The neural mechanisms underlying the considerable individual variation in subjective cognitive 

effort costs should be addressed in future work. Past work has shown that administration of the 

catecholamine reuptake blocker methylphenidate improves distracter resistance at the expense 

of flexible updating on a task analogous to the one employed here20. However we also know that 

effects of psychostimulants vary greatly with individual baseline measures of dopamine41. How 

does a preference for ignore versus update relate to baseline measures of dopamine and 

psychostimulant effects on cognition? A role for dopamine in effort-based decision-making 

would be consistent with studies in physical effort, where it has been shown that in Parkinson’s 

patients dopamine medication increases selection of high effort/high reward trials42, while 

dopamine depletion decreases willingness to exert effort in humans and rodents43,44.  Another 

potentially relevant neurotransmitter is noradrenaline that seems to be involved in switching 

modes between task engagement (focusing) and disengagement (distractibility)45,46. Indeed, 

there is recent evidence showing that amphetamine and methylphenidate, both altering 

catecholamine transmission, modify cognitive demand avoidance in rodents 47 and humans48 

respectively. These findings together suggest that catecholamines contribute to valuation of 

cognitive effort 49 and we believe our paradigm is suited to aid uncovering such effects in future 

research. 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 29, 2019. ; https://doi.org/10.1101/743120doi: bioRxiv preprint 

https://doi.org/10.1101/743120


21 
 

In conclusion, this study provides new insights to the novel and growing fields of cognitive effort 

discounting and value-based decision- making. Specifically, we showed that with increasing 

demand on working memory processes, the subjective valuation decreased, both for the process 

of distractor resistance and flexible updating. We also show strong evidence that distractor 

resistance is perceived as relatively costlier than flexible updating.  

 

Methods 
 

Participants 

For Experiment 1, 32 participants (22 women), aged between 18-29 years old were tested in total. 

Participants had normal or corrected-to-normal vision. Colorblind participants were excluded. 

Four data sets were lost during data transfer, so we ended up with 28 data sets (20 women, 18-

33 years old, mean: 24). For Experiment 2, we sought to replicate the finding that update is more 

costly than ignore. We performed a sequential sampling power calculation using the BFDA50  

package in R. We set the minimum sample size to 6051, the maximum to 100 and set the boundary 

of sampling at a Bayes Factor of 10 for either the null or the alternative hypothesis given the effect 

size estimated from Experiment 1. We collected 62 data sets (37 women, 20-44 years old, mean: 

25.6, standard deviation: 4.3), at which sample size the boundary was already reached. The study 

was approved by the local ethics committee (CMO region Arnhem/Nijmegen, The Netherlands, 

CMO2001/095) and all participants provided written informed consent, according to the 

declaration of Helsinki. 

Exclusion criteria 

We excluded participants based on four rules: 1) Failing to pass the color sensitivity test twice. 2) 

Striking evidence that they did not understand or will to perform the tasks. 3) Mean deviation 

exceeding 3 standard deviations from average for at least one of our main conditions (across 

demand) of the working memory task. 4) Failing to estimate reliable indifference points for at least 

one condition (across demand levels) of the effort discounting tasks.  
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Based on our criteria, one outlier was excluded from performance analysis of Experiment 1 for 

deviating more than 3 standard deviations from the mean for ignore (~3SD) and one from 

Experiment 2 for deviating more than 3 standard deviations from the mean of both conditions 

(~5.4SD from ignore and ~6.6SD from update mean). Four people were excluded from the analysis 

of task vs no effort indifference points in Experiment 1 and twelve in Experiment 2. In Experiment 

1, all four were excluded because we could not estimate indifference points for at least one of the 

two conditions (ignore/update). Among the four that were excluded, one always chose the no 

effort option, one of them always chose the task option and one of them always chose no effort 

for update trials and task for ignore trials. In Experiment 2, eleven participants were excluded due 

to inadequate response variability and one because he was not performing the task. Out of the 

eleven whose IPs we could not estimate, one almost always chose the task option and the rest 

always preferred the no effort option. The other participant always responded using one of the 

two response buttons. This is a clear indication that he was not trying to perform the task because 

easy and hard offer presentation was counterbalanced across response buttons. We excluded two 

participants from the analysis of “ignore vs update” indifference points in Experiment 1 analysis; 

one because we could not estimate any indifference points (always chose ignore) and another 

because they deviated more than 3 standard deviations from the mean. Four participants were 

excluded in the replication for the same analysis. One always chose ignore, two always chose 

update and one did not do the task (see above). 

 

Task design 

All paradigms were entirely programmed in MATLAB (Mathworks, Natick, MA, USA)(release 

2013a) using the Psychophysics Toolbox extension52 (version 3.0.12 ) on a Windows 7 operating 

system. The screen resolution was 1920x1080 pixels. The background color for all paradigms was 

grey (R: 200 G:200 B:200). 

 

The experiment lasted about 130 minutes and consisted of four tasks performed at a computer 

and questionnaires that participants filled in at the end. The first task (~7min) was a color 

sensitivity test aiming to check whether participants were sensitive to the colorful stimuli used in 
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the memory task. Participants then proceeded with the color wheel working memory task to 

acquire experience with varying demand of the two working memory processes of interest 

(~10min practice and 30min task). The third task (~5min practice and 55min task) was a cognitive 

effort discounting paradigm that was used to estimate subjective value and address our research 

questions. The last computer-based task was a redo of the color wheel task (~10min). Finally, 

participants filled in some experiment-related questionnaires (~5min).  

 

Color sensitivity task  

For our working memory task, we used color stimuli and a color wheel, so it was crucial that our 

participants’ color vision was not impaired. To test their sensitivity to our manipulation we 

developed a version of the color wheel task without a working memory component. In this task 

participants viewed a colored square in the middle of the screen and the same color wheel used 

in the memory task. Their goal was to click on the color of the wheel that matched the colored 

square.  
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Figure 7. Example trial of the color sensitivity task. Participants view a colored square in the middle 
of the screen and they have to click with a mouse on the corresponding color on the color wheel. 
A black line indicates the selected color and a successive line the correct color. If the selected color 
deviated 10o or less from the correct color they receive feedback that they performed well. The 
task is self-paced (24 trials total). They successfully complete the task if their average deviance is 
less than 15o. 

 

The stimuli used for the color sensitivity task were a color wheel, black lines and colored squares. 

The color wheel was created by 512 successive colored arcs of equal angle (512/360˚ = 1.42˚), 

each arc carrying a different color. The radius of the wheel was 486 pixels. To form the wheel into 

a ring, a smaller circle was superimposed, whose radius was ~362 pixels. The centre of both the 
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wheel and the circle coincided with the centre of the screen. The 512 colors of the color wheel 

arcs were generated using the hsv MATLAB colormap. The black lines were 0.4˚ black arcs.  

In every trial of this task, participants viewed the color wheel and a colored square in the middle 

of the screen (Figure 7). They were instructed to look at the color of the square and use the mouse 

to click on the corresponding shade on the color wheel. To indicate that their response was 

recorded a black line appeared on the color wheel and successively another black line appeared 

designating the location of the correct color. Feedback consisted of the actual deviance plus a 

positive message (‘Good job! You deviated only __ degrees.’) and was provided only when 

responses deviated less than 10˚. 

 

To test a representative sample of the color wheel we split the wheel in 12 main arcs. Participants 

were tested in two different shades from each of the 12 color categories (arcs). So, they performed 

in total 24 trials of this task. The presentation of the trials as well as the orientation of the color 

wheel were randomized. The responses were self-paced and total task duration was 

approximately 7min.  

 

The main dependent variable in this task was deviance in degrees from the correct color. If their 

average deviance was less than 15˚ by the end of the task, the experiment continued. Otherwise, 

they had one more chance to perform the color sensitivity task, but if failed again they would be 

excluded.  

 

All participants from both experiments completed 24 trials of the color sensitivity task and they all 

met the criterion (average deviance from correct color below 15 degrees) to continue to the main 

paradigm. For Experiment 1, the average deviance from the target color was 6.63 degrees (SD = 

1.23; median = 4.72, SD = 0.85) and for replication Experiment 2 mean deviance was 6.27 (SD=1.4; 

median=4.85, SD=1.08). We also reported the median for easy comparison with the color wheel 

working memory task results.  
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Color wheel working memory task  

After successfully completing the colour sensitivity task, participants proceeded with the colour 

wheel working memory task. In this part, participants experienced varying demands of cognitive 

stability and cognitive flexibility. This task was based on a short-recall task18 and delayed-match-

to-sample tasks19 that have previously been used to disentangle between the two working 

memory processes of interest.  

The stimuli displayed during this paradigm were a color wheel, colored squares, black frames of 

squares, a fixation cross, black lines and central letter cues. The color wheel was generated as 

described in the color sensitivity section. The number of squares varied from one to four and they 

could be located in four different positions. The centres of the squares formed a rectangle with 

dimensions 248*384 pixels. Each of the four squares was 100x100 pixels in size. To choose the 

colors of the squares, we split the color wheel into 12 main arcs of 42 colors each and only used 

the 15 central colors of each arc. The arcs from which the colors would be sampled per trial were 

defined manually, but the exact shade (RGB values) was randomly selected. The letter cues were 

“I” and “U”, colored black and presented at the centre of the screen.  

Every trial of the task consisted of three phases separated by two delay periods (Figure 1). During 

the encoding phase, participants viewed the fixation cross and one to four colored squares for two 

seconds. The number of squares displayed (set size 1-4) represented the demand of the trial. A 

delay of two seconds followed, during which only the fixation cross was displayed. Then the 

interference phase followed. In this phase, participants viewed the same number of squares as 

during encoding, at the same locations, but with different colors. Instead of a fixation cross, one 

of the two letter cues was presented during interference in the middle of the screen. The cue 

indicated the condition of the trial: “I” for ignore trials and “U” for update. The second delay 

duration depended on trial condition, and was two seconds for ignore and six seconds for update 

trials. Finally, during the response phase participants saw black frames of the same squares, one 

of which was highlighted, in addition to the color wheel and the fixation cross. If the participant 

responded within four seconds, a black line appeared on the color wheel, otherwise, they were 

instructed to respond faster (‘Please respond faster!’). The total duration of the response phase 
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was five seconds.  

For the encoding phase, participants were instructed to always memorize the colors and locations 

of all presented squares. The instructions for the interference phase differed based on the 

condition as indicated by the letter cue. In ignore trials, participants needed to maintain in their 

memory the colors from the encoding phase and not be distracted by the new intervening stimuli. 

In flexible updating trials, participants had to let go of their previous representations and update 

into their memory the stimuli from the interference phase. Thus, the colors that needed to be 

remembered for the ignore condition were the ones from the encoding phase, while for the 

update condition they were the ones from the interference phase. To match the time that the 

relevant stimuli were maintained in memory for both conditions, the second delay was 4 seconds 

longer for update trials. Participants were to indicate the color for only the highlighted square. 

They had to identify the target color on the color wheel and click using a mouse, within four 

seconds. Only the first response counted. A black line indicated their response. Only during 

practice trials, a second line appeared at the correct color and positive feedback was displayed if 

they were performing well (as in color sensitivity section). During the task, no feedback was 

provided. We instructed participants to fixate in the middle of the screen throughout the task in 

order to dissuade them from adopting the strategy of closing their eyes during ignore trials in 

order to avoid being distracted.  

Participants first underwent a practice session of 16 trials and then performed two blocks of the 

task. A block consisted of 64 trials, resulting from repeating each combination of difficulty (four 

levels: set size 1 – 4) and condition (two levels: ignore and update) eight times. Depending on the 

difficulty level of the trial, a group of two to eight colors was used to create the trial stimuli, each 

color coming from one of the 12 arcs. Colors of the same arc never appeared more than once in 

the same trial. To make sure that ignore and update trials were as similar and counterbalanced as 

possible, the color stimuli sets displayed and the target colors were the same for both conditions. 

Because the relevant colors appeared during encoding for Ignore and during interference for 

update, we made sure that the same group of stimuli also appeared in reverse order between 

these two phases. So, the same groups of colored squares were presented four times per set size 

and in total 32 groups of colors were used. To decrease learning effects due to repetition, we split 
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the same stimuli groups between the two blocks. To control for differences between the two 

hemispheres in representation of color53, target locations (left/right) were counterbalanced across 

conditions. Moreover, the same colors were highlighted for all four set sizes.  

Cognitive effort discounting task 

After participants gained experience with all four difficulty levels of update and ignore conditions 

of the color wheel working memory task, they proceeded with the third part of the experiment: 

the effort discounting task (Figure 1B). The aim of this paradigm was to quantify the subjective 

value that participants assigned to the color wheel task performance. There were two versions of 

choice trials to address our two research questions. In both versions, two options were 

accompanied by an amount of money and the options defined what participants would do in the 

last part of the experiment.  

In every trial of the task, participants saw a rectangle containing two options and a fixation cross. 

The options could be “No Redo” or any set size of ignore or update, for example “Ignore 2”, 

corresponding to the ignore condition of the task and set size of 2. Below each option, a monetary 

reward was displayed, for example “for 2€”. Participants could choose the left or right option by 

pressing 1 or 2 on the keyboard and they had six seconds to respond. When participants made a 

choice, a black square surrounding the selected offer appeared to indicate that their response was 

recorded.  

At this stage, participants were instructed that there were two more parts in the experiment. In 

the last part, they would have the opportunity to earn a bonus monetary reward by redoing one 

to three blocks of the color wheel task. However, the amount of the bonus and the type of trials 

they would repeat would be based on the choices they made on the choice task. To highlight the 

importance of every choice, we instructed them that of all the choices they made (of both 

versions) the computer would select only one randomly and the bonus and redo would be based 

on that single choice. To minimize effects of error avoidance on choices, we informed participants 

that accuracy during the redo part would not influence whether they receive the monetary 

reward, as long as their performance was comparable with the first time that they did the color 

wheel task (part 2 of experiment). Both the rewards and the redo were real and not hypothetical.  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 29, 2019. ; https://doi.org/10.1101/743120doi: bioRxiv preprint 

https://doi.org/10.1101/743120


29 
 

 

Task vs No effort: Choices between working memory task and no task  

These trials addressed the first research question: whether the subjective values of ignore and 

update decrease as a function of task demand. Here, participants had to choose between 

repeating a level of ignore or update (effort offer) and not redoing the color wheel task at all (no 

effort offer). If they chose the no effort option (“No Redo” ) they were instructed that they would 

be able to use their time as they pleased (e.g. by using their phones or lab computer) but they 

would still have to stay in the testing lab so that time spent on the experiment was the same for 

both options. Otherwise, if the option to repeat the task was selected, the redo trials would consist 

of mostly the selected choice condition and level. “Mostly” is important because if they always did 

the same condition during the redo, they would be able to predict whether they had to update or 

ignore. We emphasized that they should take their time to respond, consider both the money and 

their experience while doing the color wheel task as well as the importance of choosing their true 

preference and not try to please us. 

Ignore vs Update: Choices between cognitive stability and cognitive flexibility 

This COGED trial type aimed to investigate whether ignore is perceived as costlier than flexible 

updating by directly contrasting them. In these trials, participants had to choose between doing 

the same level of either ignore or update.  

For the ‘task vs no effort’ version of the COGED, the amount offered for the no effort “No Redo” 

option varied from €0.10 to €2.20 in €0.20 steps (except the first step, which was €0.10), while 

the task option (effort offer) was always fixed at €2.00. The €2.20 option for “No Redo” was 

included to identify whether there were participants who strongly preferred performing the task, 

even if that meant forgoing rewards. As we hypothesized that ignore would be costlier, in the 

‘ignore vs update’ version of  the task, ignore (hard offer) was kept steady at €2 and update (easy 

offer) was varying from €0.10 to €4 in €0.20 steps (as above). There were 96 possible pairs for 

“task vs no effort” choices (12 amounts*2 conditions*4 set sizes) and 84 for “ignore vs update” 

choices (21 amounts*4 set sizes). Given the evidence that choice is probabilistic rather than 

deterministic39, every pair of options was sampled three times. We decided on three repetitions 
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of the pairs based on a simulation analysis using pilot data (Supplemental Figure 4) in order to 

optimize the trade-off between indifference point estimation and task duration. Each participant 

performed three blocks that contained in total 288 trials of “task vs no effort” trials and 252 trials 

of “ignore vs update”. The trials of the two versions were interleaved (mixed) and randomized 

within each block. To avoid location effects, we counterbalanced the left-right presentation of the 

two options. Total task duration was about 55 minutes. 

We decided to use fixed sets of offers and not a titrated staircase procedure to estimate subjective 

value because staircase procedures do not sample the entire logistic regression curve.  This COGED 

version allowed us to sample the logistic regression curves adequately because all participants 

were faced with the entire range of offer options. 

 

Redo 

After participants finished three blocks of the discounting choice task, one of their choices was 

pseudo-randomly selected. Specifically, the computer only sampled from “ignore vs update” 

choices of level 3 or 4. Participants always did one block of 24 trials of the color wheel task. Two-

thirds of these trials were their preferred condition (ignore/update). We decided to never select 

the no effort option to maintain experimenter credibility, so that participants discussing the task 

are convinced that the consequences are real. The redo data were not analysed and participants 

always received the bonus regardless of their performance. 

 

Debriefing questions 

After the end of the experiment we requested participants to complete questionnaires. We 

explicitly asked them to report their preference by asking “Which trials did you prefer?”. 

 

Data analysis 

We analysed our data using both frequentist and Bayesian statistics. All statistical analyses were 

performed using open source software JASP (version 0.7.5.6)54,55 on a Windows 7 operating 

system. 
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As skepticism against classical statistical tools increases56, we turned to Bayesian statistics57. This 

allowed us to quantify evidence for our hypotheses instead of forcing an all-or-none decision and 

an arbitrary cut- off of significance. Bayesian statistics can also provide evidence for the null 

hypothesis (H0), thus distinguishing between undiagnostic data (“absence of evidence”) and data 

supporting H0 (“evidence of absence”). Another important benefit is that we are able to monitor 

evidence as data accumulate and we can continue sampling without biasing the result. Due to all 

the above advantages, we decided that our main conclusions would be drawn based on the 

Bayesian analyses.  

However, frequentist statistics are well- established and widely-acknowledged tools, so more 

scientists are familiar with their rationale and interpretation. To ensure that our results are 

interpretable for all and to allow comparison with earlier work, we additionally included classical 

statistics. Bayesian statistics allow model comparison, but also provide evidence for individual 

effects. When possible, we reported Bayesian model comparison (BF10: Bayes factor of model 

against the null) as well as Bayesian and frequentist effects analyses (BFINC(LUSION): Bayes factor of 

Bayesian model averaging). We used the default JASP Cauchy priors for all Bayesian statistics55. 

Regarding frequentist statistics, we considered a p-value of 0.05 or smaller as significant. In the 

cases where sphericity was violated, we reported the Greenhouse-Geisser corrected p-values.  

 

Color sensitivity task analysis 

The data from this task were used only to establish that participants are sensitive enough to our 

color wheel. We calculated the overall average deviance in degrees.  

 

Color wheel task data analysis 

We computed the median deviance and median reaction time for all levels of ignore and update. 

The rationale behind choosing the median was that it is less sensitive to extreme values. For 

example, 90o and 180o accuracy scores are both wrong responses, but the latter affects the mean 

much more strongly. We used the above indices for the statistical analysis using classical and 

Bayesian 2x4 repeated measures ANOVAs with condition (ignore/update) and set size (levels 1-4) 
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as within-subject factors. All participants in both experiments performed above chance level 

(mean deviance less than 90o).  

 

Discounting choice task data analysis  

As an estimate of subjective value, we computed participants’ indifference points. The indifference 

points can be interpreted as the financial amount offered for the presumably less effortful option 

(no effort or update) at which participants are equally likely to choose one or the other, thus the 

probability of accepting either option would be 0.5. With the main dependent variable being 

choice, a dichotomous variable, we calculated the probabilities of accepting the presumably less 

effortful offer using binomial logistic regression analysis in MATLAB and extracted the indifference 

points for the different conditions.  

 

Choices between working memory task and no effort  

Having determined the indifference points for all levels of both working memory conditions per 

participant, we continued with the statistical analysis using classical and Bayesian 2x4 repeated 

measures ANOVAs to assess our first hypothesis that subjective value decreases with demand for 

ignore and update. Confirmation of this hypothesis would require that the model including set size 

is more likely than the null model, or the presence of a set size effect with p-value smaller than 

0.05. We also performed Bayesian and classical one sample t-tests on the indifference points 

across levels for both conditions to assess whether the subjective value of the working memory 

functions was overall lower than the no task subjective value. The task offer was always €2, so a 

subjective value lower than 2 would imply that participants were discounting the task option.  

 

Choices between Update and Ignore  

We then computed participants’ indifference points collapsing across levels of “ignore vs update” 

choice trials to evaluate our hypothesis that ignore has a lower subjective value than update using 

Bayesian and classical one sample t-tests. As ignore offer was set at 2€, subjective values lower 

than 2 indicate that participants were willing to forgo rewards to repeat update instead of ignore 
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trials. Additionally, we calculated indifference points for all levels separately and used a 1x4 

ANOVA with set size as a factor to assess if the preference for update varies with demand.  

Mixed effects analyses 

We tested for a relationship between preference and performance with mixed effects logistic 

regression analyses, using the lme4 package24 in R25. In our model, we regressed preference on 

fixed effects of set size, condition, the money offered for the “no effort” option and deviance 

(accuracy index). We also included random intercepts and slopes for the effects of easy offer 

amount, condition and set size per participant. Continuous variables “easy offer amount” and 

“deviance” were log-transformed and standardized. We also assessed if the effect of condition 

remained significant after including deviance in the model. For that analysis, deviance was also 

added as a by- participant random slope. Model fits were compared using likelihood ratio chi- 

square tests. 

To estimate the discounting curves across participants (Figure 3C&D) we used a mixed effects 

model per condition with offer amount as fixed factor and participant as a random factor.  
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